并集bìngjí
Khai niem co ban
Hop cua hai tap hop A va B, ky hieu A ∪ B, la tap hop chua tat ca cac phan tu thuoc A hoac B (hoac ca hai).
Dinh nghia toan hoc
Mot phan tu thuoc hop khi no thuoc it nhat mot trong hai tap hop.
Tinh chat quan trong
1. Tinh giao hoan
2. Tinh ket hop
3. Phan tu don vi
(tap rong la phan tu don vi)
4. Tinh luy dang
5. Hop voi tap vu tru
(U la tap hop vu tru)
Cong thuc so phan tu
Cong thuc nay dam bao cac phan tu chung khong bi dem hai lan.
Vi du
Vi du 1: Tap hop huu han
Cho: A = {1, 2, 3, 4, 5}, B = {3, 4, 5, 6, 7}
Tim: A ∪ B
Giai: Tat ca phan tu tu ca hai tap hop: 1, 2, 3, 4, 5, 6, 7
Dap an: A ∪ B = {1, 2, 3, 4, 5, 6, 7}
Vi du 2: Hop cua khoang
Cho: A = [-2, 3], B = [1, 5]
Tim: A ∪ B
Giai: Hop cua hai khoang la [-2, 5]
Dap an: A ∪ B = [-2, 5]
Bai tap CSCA
Vi du 1: Co ban (Do kho ★☆☆☆☆)
Neu A = {a, b, c, d} va B = {c, d, e, f}, tim A ∪ B.
Giai: Tat ca phan tu: a, b, c, d, e, f
Dap an: {a, b, c, d, e, f}
Vi du 2: Trung binh (Do kho ★★★☆☆)
Neu |A| = 5, |B| = 4 va |A ∩ B| = 2, tim |A ∪ B|.
Giai:
Dap an: 7
Vi du 3: Nang cao (Do kho ★★★★☆)
Neu A ∪ B = A, moi quan he giua tap hop A va B la gi?
Giai: Neu A ∪ B = A, thi moi phan tu cua B cung phai thuoc A.
Dap an: B ⊆ A (B la tap con cua A)
Loi thuong gap
Loi 1: Nham lan hop va giao
Sai: A ∪ B chi bao gom phan tu chung
Dung: A ∪ B bao gom tat ca phan tu tu ca hai tap hop
Loi 2: Dem trung so phan tu
Sai: |A ∪ B| = |A| + |B|
Dung: |A ∪ B| = |A| + |B| - |A ∩ B|
Meo hoc tap
- Tu duy "HOAC": Hop co nghia la HOAC - phan tu phai thuoc IT NHAT MOT tap hop
- Ve bieu do Venn: Bieu dien truc quan giup tranh sai sot
- Nho cong thuc so phan tu: Luon tru giao!
Meo thi: Cho bai toan so phan tu, luon su dung cong thuc |A ∪ B| = |A| + |B| - |A ∩ B|!