Skip to main content
返回术语表
set-theory难度:基础set-theorycomplementsets
Chia sẻ

补集bǔjí

phan bu
3 分钟阅读
更新于 2025-01-24
已完成

Khai niem co ban

Phan bu cua tap hop A, ky hieu la UA\complement_U A hoac A\overline{A} hoac AcA^c, la tap hop chua tat ca cac phan tu trong tap hop vu tru U ma KHONG thuoc A.

Dinh nghia toan hoc

UA={xxU va xA}\complement_U A = \{x | x \in U \text{ va } x \notin A\}

Phan bu chua chinh xac nhung phan tu thuoc tap hop vu tru nhung khong thuoc A.

Cac dang ky hieu

  • UA\complement_U A - Ky hieu chuan nhan manh tap hop vu tru
  • A\overline{A} - Ky hieu gach ngang tren
  • AcA^c hoac AA' - Ky hieu chi so tren
  • UAU - A - Ky hieu hieu cua tap hop

Bieu dien truc quan

Trong bieu do Venn, phan bu la vung ben ngoai tap hop A nhung ben trong tap hop vu tru.

  U: [#############]
     [####]  A  [  ]

Vung to mau [####] bieu dien UA\complement_U A.

Tinh chat quan trong

1. Phan bu cua phan bu

U(UA)=A\complement_U(\complement_U A) = A

2. Phan bu cua tap hop vu tru

UU=\complement_U U = \emptyset

3. Phan bu cua tap rong

U=U\complement_U \emptyset = U

4. Hop voi phan bu

AUA=UA \cup \complement_U A = U

5. Giao voi phan bu

AUA=A \cap \complement_U A = \emptyset

6. Dinh luat De Morgan

U(AB)=UAUB\complement_U(A \cup B) = \complement_U A \cap \complement_U B U(AB)=UAUB\complement_U(A \cap B) = \complement_U A \cup \complement_U B

Vi du

Vi du 1: Tap hop huu han

Cho: U = {1, 2, 3, 4, 5, 6}, A = {2, 4, 6}

Tim: UA\complement_U A

Giai: Phan tu trong U nhung khong trong A: 1, 3, 5

Dap an: UA\complement_U A = {1, 3, 5}

Vi du 2: Tap hop so thuc

Cho: U = ℝ, A = {x | x ≥ 2}

Tim: UA\complement_U A

Giai: So thuc KHONG ≥ 2, nghia la < 2

Dap an: UA\complement_U A = {x | x < 2} = (-∞, 2)

Vi du 3: Phan bu cua khoang

Cho: U = ℝ, A = (-1, 3]

Tim: UA\complement_U A

Giai: Tat ca so thuc ngoai (-1, 3]

Dap an: UA\complement_U A = (-∞, -1] ∪ (3, +∞)

Bai tap CSCA

💡 Luu y: Cac bai tap sau duoc thiet ke dua tren de cuong thi CSCA.

Vi du 1: Co ban (Do kho ★★☆☆☆)

Neu U = {1, 2, 3, 4, 5} va A = {1, 3, 5}, tim UA\complement_U A.

Lua chon:

  • A. {1, 3, 5}
  • B. {2, 4}
  • C. {1, 2, 3, 4, 5}
  • D. ∅

Giai: Phan tu trong U nhung khong trong A: 2, 4

Dap an: B


Vi du 2: Trung binh (Do kho ★★★☆☆)

Cho U = ℝ, A = {x | x² - 4 ≤ 0}, tim UA\complement_U A.

Giai:

Truoc tien, giai bat phuong trinh: x240x² - 4 ≤ 0 (x2)(x+2)0(x-2)(x+2) ≤ 0 A=[2,2]A = [-2, 2]

Phan bu la tat ca so thuc ngoai khoang nay: UA=(,2)(2,+)\complement_U A = (-\infty, -2) \cup (2, +\infty)

Dap an: (,2)(2,+)(-\infty, -2) \cup (2, +\infty)


Vi du 3: Nang cao (Do kho ★★★★☆)

Neu U = ℝ, A = {x | x > 1}, B = {x | x > 2}, tim UAB\complement_U A \cup B.

Giai:

UA\complement_U A = {x | x ≤ 1} = (-∞, 1] B = {x | x > 2} = (2, +∞)

UAB=(,1](2,+)\complement_U A \cup B = (-\infty, 1] \cup (2, +\infty)

Dap an: (,1](2,+)(-\infty, 1] \cup (2, +\infty)

Dinh luat De Morgan chi tiet

Dinh luat 1: Phan bu cua hop

U(AB)=UAUB\complement_U(A \cup B) = \complement_U A \cap \complement_U B

Vi du: Neu A = {1, 2}, B = {2, 3}, U = {1, 2, 3, 4}

  • A ∪ B = {1, 2, 3}
  • U(AB)\complement_U(A \cup B) = {4}
  • UA\complement_U A = {3, 4}, UB\complement_U B = {1, 4}
  • UAUB\complement_U A \cap \complement_U B = {4} ✓

Dinh luat 2: Phan bu cua giao

U(AB)=UAUB\complement_U(A \cap B) = \complement_U A \cup \complement_U B

Loi thuong gap

❌ Loi 1: Quen tap hop vu tru

Sai: A\complement A = {tat ca phan tu khong trong A} ✗

Dung: UA\complement_U A = {phan tu trong U nhung khong trong A} ✓

❌ Loi 2: Sai bien khoang

Sai: Neu A = [1, 3], thi RA\complement_\mathbb{R} A = (-∞, 1] ∪ [3, +∞) ✗

Dung: RA\complement_\mathbb{R} A = (-∞, 1) ∪ (3, +∞) ✓

❌ Loi 3: Sai dau trong De Morgan

Sai: (AB)\complement(A \cup B) = AB\complement A \cup \complement B

Dung: (AB)\complement(A \cup B) = AB\complement A \cap \complement B

Meo hoc tap

  1. Luon xac dinh U truoc: Tap hop vu tru quyet dinh phan bu
  2. Dao bien cho khoang: Mo ↔ dong khi lay phan bu
  3. Nam vung dinh luat De Morgan: "Pha gach ngang, doi dau"
  4. Phan bu kep tra ve ban dau: (A)=A\complement(\complement A) = A

💡 Meo thi: Khi lay phan bu cua khoang, nho rang: bien dong thanh mo, va mo thanh dong!