Skip to main content
返回术语表
algebra难度:基础algebraquadraticvieta
Share

韦达定理wéidá dìnglǐ

Vieta's formulas
4 分钟阅读
更新于 2025-01-24
已完成

Core Concept

Vieta's formulas (韦达定理) relate the coefficients of a polynomial to sums and products of its roots.

For the quadratic equation ax2+bx+c=0ax^2 + bx + c = 0 with roots x1x_1 and x2x_2:

x1+x2=bax_1 + x_2 = -\frac{b}{a} (Sum of roots)

x1x2=cax_1 \cdot x_2 = \frac{c}{a} (Product of roots)

Derivation

From the quadratic formula: x1=b+Δ2a,x2=bΔ2ax_1 = \frac{-b + \sqrt{\Delta}}{2a}, \quad x_2 = \frac{-b - \sqrt{\Delta}}{2a}

Sum: x1+x2=b+Δ2a+bΔ2a=2b2a=bax_1 + x_2 = \frac{-b + \sqrt{\Delta}}{2a} + \frac{-b - \sqrt{\Delta}}{2a} = \frac{-2b}{2a} = -\frac{b}{a}

Product: x1x2=(b+Δ)(bΔ)4a2=b2Δ4a2=b2(b24ac)4a2=4ac4a2=cax_1 \cdot x_2 = \frac{(-b + \sqrt{\Delta})(-b - \sqrt{\Delta})}{4a^2} = \frac{b^2 - \Delta}{4a^2} = \frac{b^2 - (b^2 - 4ac)}{4a^2} = \frac{4ac}{4a^2} = \frac{c}{a}

Important Applications

1. Finding Expressions Without Solving

Calculate expressions involving roots without finding the actual roots.

Common formulas: x12+x22=(x1+x2)22x1x2x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2

x13+x23=(x1+x2)33x1x2(x1+x2)x_1^3 + x_2^3 = (x_1 + x_2)^3 - 3x_1x_2(x_1 + x_2)

1x1+1x2=x1+x2x1x2\frac{1}{x_1} + \frac{1}{x_2} = \frac{x_1 + x_2}{x_1 x_2}

(x1x2)2=(x1+x2)24x1x2(x_1 - x_2)^2 = (x_1 + x_2)^2 - 4x_1x_2

2. Constructing Equations from Roots

If α\alpha and β\beta are roots, then the quadratic equation is: x2(α+β)x+αβ=0x^2 - (\alpha + \beta)x + \alpha\beta = 0

Or equivalently: (xα)(xβ)=0(x - \alpha)(x - \beta) = 0

3. Determining Root Properties

Without solving, determine if roots are:

  • Both positive: x1+x2>0x_1 + x_2 > 0 AND x1x2>0x_1 \cdot x_2 > 0
  • Both negative: x1+x2<0x_1 + x_2 < 0 AND x1x2>0x_1 \cdot x_2 > 0
  • Opposite signs: x1x2<0x_1 \cdot x_2 < 0

CSCA Practice Problems

💡 Note: The following practice problems are designed based on the CSCA exam syllabus.

Example 1: Basic (Difficulty ★★☆☆☆)

If x1x_1 and x2x_2 are roots of x23x4=0x^2 - 3x - 4 = 0, find x1+x2x_1 + x_2 and x1x2x_1 \cdot x_2.

Solution:

By Vieta's formulas with a=1a = 1, b=3b = -3, c=4c = -4: x1+x2=31=3x_1 + x_2 = -\frac{-3}{1} = 3 x1x2=41=4x_1 \cdot x_2 = \frac{-4}{1} = -4

Answer: Sum = 3, Product = -4


Example 2: Intermediate (Difficulty ★★★☆☆)

If x1x_1 and x2x_2 are roots of 2x2+5x3=02x^2 + 5x - 3 = 0, find x12+x22x_1^2 + x_2^2.

Solution:

By Vieta's formulas: x1+x2=52,x1x2=32x_1 + x_2 = -\frac{5}{2}, \quad x_1 \cdot x_2 = -\frac{3}{2}

Using the identity: x12+x22=(x1+x2)22x1x2x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2 =(52)22(32)= \left(-\frac{5}{2}\right)^2 - 2\left(-\frac{3}{2}\right) =254+3=254+124=374= \frac{25}{4} + 3 = \frac{25}{4} + \frac{12}{4} = \frac{37}{4}

Answer: 374\dfrac{37}{4}


Example 3: Advanced (Difficulty ★★★★☆)

If x1x_1 and x2x_2 are roots of x24x+1=0x^2 - 4x + 1 = 0, find x1x2+x2x1\dfrac{x_1}{x_2} + \dfrac{x_2}{x_1}.

Solution:

By Vieta's formulas: x1+x2=4,x1x2=1x_1 + x_2 = 4, \quad x_1 \cdot x_2 = 1

Simplify the expression: x1x2+x2x1=x12+x22x1x2\frac{x_1}{x_2} + \frac{x_2}{x_1} = \frac{x_1^2 + x_2^2}{x_1 x_2}

First find x12+x22x_1^2 + x_2^2: x12+x22=(x1+x2)22x1x2=162=14x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2 = 16 - 2 = 14

Therefore: x1x2+x2x1=141=14\frac{x_1}{x_2} + \frac{x_2}{x_1} = \frac{14}{1} = 14

Answer: 1414


Example 4: Advanced (Difficulty ★★★★☆)

Find a quadratic equation with integer coefficients whose roots are 2+32 + \sqrt{3} and 232 - \sqrt{3}.

Solution:

Sum of roots: α+β=(2+3)+(23)=4\alpha + \beta = (2 + \sqrt{3}) + (2 - \sqrt{3}) = 4

Product of roots: αβ=(2+3)(23)=43=1\alpha \cdot \beta = (2 + \sqrt{3})(2 - \sqrt{3}) = 4 - 3 = 1

The equation is: x24x+1=0x^2 - 4x + 1 = 0

Answer: x24x+1=0x^2 - 4x + 1 = 0


Example 5: Advanced (Difficulty ★★★★★)

If one root of x2+px+q=0x^2 + px + q = 0 is double the other, and the sum of roots is 6, find pp and qq.

Solution:

Let roots be rr and 2r2r.

From Vieta's formulas:

  • r+2r=3r=pr + 2r = 3r = -p
  • r2r=2r2=qr \cdot 2r = 2r^2 = q

Given sum = 6: 3r=6r=23r = 6 \Rightarrow r = 2

Therefore: p=3r=6p = -3r = -6 q=2r2=2(4)=8q = 2r^2 = 2(4) = 8

Answer: p=6p = -6, q=8q = 8

Extended Vieta's Formulas

For cubic equation ax3+bx2+cx+d=0ax^3 + bx^2 + cx + d = 0 with roots x1,x2,x3x_1, x_2, x_3:

x1+x2+x3=bax_1 + x_2 + x_3 = -\frac{b}{a} x1x2+x2x3+x3x1=cax_1x_2 + x_2x_3 + x_3x_1 = \frac{c}{a} x1x2x3=dax_1 \cdot x_2 \cdot x_3 = -\frac{d}{a}

Common Mistakes

❌ Mistake 1: Wrong Sign for Sum

Wrong: x1+x2=bax_1 + x_2 = \frac{b}{a}

Correct: x1+x2=bax_1 + x_2 = -\frac{b}{a}

❌ Mistake 2: Assuming Roots Are Real

Vieta's formulas work even when Δ<0\Delta < 0 (complex roots), but many applications require real roots. Always check Δ0\Delta \geq 0 if needed.

❌ Mistake 3: Incomplete Root Conditions

For "both roots positive": need BOTH x1+x2>0x_1 + x_2 > 0 AND x1x2>0x_1 \cdot x_2 > 0 AND Δ0\Delta \geq 0.

Study Tips

  1. Memorize the sign: Sum has negative, product doesn't
  2. Learn common transformations: x12+x22x_1^2 + x_2^2, 1x1+1x2\frac{1}{x_1} + \frac{1}{x_2}, etc.
  3. Combine with discriminant: For real root conditions
  4. Practice reverse problems: Finding equations from given roots

💡 Exam Tip: Vieta's formulas are tested frequently in CSCA. Master the transformations for x12+x22x_1^2 + x_2^2 and 1x1+1x2\frac{1}{x_1} + \frac{1}{x_2} - they appear in most problems!