Skip to main content
返回术语表
trigonometry难度:基础trigonometryfunctions
Share

正弦函数zhèngxián hánshù

sine function
4 分钟阅读
更新于 2025-11-02
已完成

Core Concept

The Sine Function is one of the fundamental trigonometric functions, describing the relationship between an angle and the ratio of the opposite side to the hypotenuse in a right triangle. On the unit circle, the sine function represents the y-coordinate of a point.

Mathematical Definition

In a right triangle, for an acute angle α\alpha: sinα=oppositehypotenuse\sin \alpha = \frac{\text{opposite}}{\text{hypotenuse}}

On the unit circle, if angle α\alpha terminates at point P(x,y)P(x, y): sinα=y\sin \alpha = y

Function Form

y=sinx,xRy = \sin x, \quad x \in \mathbb{R}

Graph and Properties

Basic Properties

  1. Domain: R\mathbb{R} (all real numbers)
  2. Range: [1,1][-1, 1]
  3. Period: T=2πT = 2\pi
  4. Parity: Odd function, sin(x)=sinx\sin(-x) = -\sin x
  5. Symmetry:
    • Symmetric about the origin
    • Symmetric about lines x=π2+kπx = \frac{\pi}{2} + k\pi (kZk \in \mathbb{Z})

Monotonicity

  • Increasing intervals: [π2+2kπ,π2+2kπ]\left[-\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi\right] (kZk \in \mathbb{Z})
  • Decreasing intervals: [π2+2kπ,3π2+2kπ]\left[\frac{\pi}{2} + 2k\pi, \frac{3\pi}{2} + 2k\pi\right] (kZk \in \mathbb{Z})

Special Values

Angle00π6\frac{\pi}{6}π4\frac{\pi}{4}π3\frac{\pi}{3}π2\frac{\pi}{2}π\pi
sin\sin0012\frac{1}{2}22\frac{\sqrt{2}}{2}32\frac{\sqrt{3}}{2}1100

Extreme Values

  • Maximum: 11, at x=π2+2kπx = \frac{\pi}{2} + 2k\pi (kZk \in \mathbb{Z})
  • Minimum: 1-1, at x=π2+2kπx = -\frac{\pi}{2} + 2k\pi (kZk \in \mathbb{Z})

Important Formulas

Fundamental Identity

sin2x+cos2x=1\sin^2 x + \cos^2 x = 1

Reduction Formulas

  • sin(πx)=sinx\sin(\pi - x) = \sin x
  • sin(π+x)=sinx\sin(\pi + x) = -\sin x
  • sin(2πx)=sinx\sin(2\pi - x) = -\sin x
  • sin(π2x)=cosx\sin\left(\frac{\pi}{2} - x\right) = \cos x
  • sin(π2+x)=cosx\sin\left(\frac{\pi}{2} + x\right) = \cos x

Sum and Difference Formulas

sin(α±β)=sinαcosβ±cosαsinβ\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta

Double Angle Formula

sin2α=2sinαcosα\sin 2\alpha = 2\sin \alpha \cos \alpha

CSCA Practice Problems

💡 Note: The following practice problems are designed according to CSCA exam syllabus and Chinese standardized testing format to help students familiarize with exam question types and problem-solving strategies.

[Example 1] Basic (Difficulty ★★☆☆☆)

Given sinα=35\sin \alpha = \frac{3}{5} and α\alpha is in the second quadrant, find cosα\cos \alpha and tanα\tan \alpha.

Solution:

From sin2α+cos2α=1\sin^2 \alpha + \cos^2 \alpha = 1: cos2α=1sin2α=1925=1625\cos^2 \alpha = 1 - \sin^2 \alpha = 1 - \frac{9}{25} = \frac{16}{25}

Since α\alpha is in the second quadrant, cosα<0\cos \alpha < 0: cosα=45\cos \alpha = -\frac{4}{5}

tanα=sinαcosα=3/54/5=34\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{3/5}{-4/5} = -\frac{3}{4}

Answer: cosα=45\cos \alpha = -\frac{4}{5}, tanα=34\tan \alpha = -\frac{3}{4}


[Example 2] Intermediate (Difficulty ★★★☆☆)

Find the maximum and minimum values of y=2sinx+1y = 2\sin x + 1 on [0,2π][0, 2\pi].

Solution:

Since sinx[1,1]\sin x \in [-1, 1]:

Maximum: When sinx=1\sin x = 1 (at x=π2x = \frac{\pi}{2}), ymax=2×1+1=3y_{max} = 2 \times 1 + 1 = 3

Minimum: When sinx=1\sin x = -1 (at x=3π2x = \frac{3\pi}{2}), ymin=2×(1)+1=1y_{min} = 2 \times (-1) + 1 = -1

Answer: Maximum is 33, minimum is 1-1

Common Misconceptions

❌ Misconception 1: Confusing the period

Wrong: Thinking the sine function has period π\pi

Correct: The sine function has period 2π2\pi, sin(x+2π)=sinx\sin(x + 2\pi) = \sin x

❌ Misconception 2: Forgetting to consider quadrants

Wrong: From sinα=35\sin \alpha = \frac{3}{5} directly concluding cosα=45\cos \alpha = \frac{4}{5}

Correct: Must determine the sign of cosα\cos \alpha based on the quadrant

Study Tips

  1. Memorize special values: Sine values for 0°,30°,45°,60°,90°0°, 30°, 45°, 60°, 90°
  2. Understand the graph: Draw and understand periodicity and symmetry
  3. Master formulas: Reduction, sum/difference, double angle formulas
  4. Distinguish quadrants: Sine values have different signs in different quadrants

💡 Exam Tip: The sine function is core to trigonometry, accounting for about 40% of trigonometric questions in CSCA exams. Must be thoroughly understood and mastered!