Core Concept
The Law of Sines is an essential tool for solving triangles, describing the proportional relationship between side lengths and the sines of their opposite angles.
Theorem Statement
In △ A B C \triangle ABC △ A BC , let a , b , c a, b, c a , b , c be the sides opposite to angles A , B , C A, B, C A , B , C respectively, and R R R be the circumradius:
a sin A = b sin B = c sin C = 2 R \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R s i n A a = s i n B b = s i n C c = 2 R
Theorem Proof
Method 1: Area Method
Let S S S be the area of △ A B C \triangle ABC △ A BC :
S = 1 2 b c sin A = 1 2 a c sin B = 1 2 a b sin C S = \frac{1}{2}bc\sin A = \frac{1}{2}ac\sin B = \frac{1}{2}ab\sin C S = 2 1 b c sin A = 2 1 a c sin B = 2 1 ab sin C
From the first two expressions:
b c sin A = a c sin B bc\sin A = ac\sin B b c sin A = a c sin B
a sin A = b sin B \frac{a}{\sin A} = \frac{b}{\sin B} s i n A a = s i n B b
Other relationships can be proved similarly.
Method 2: Circumcircle Method
Let R R R be the circumradius of △ A B C \triangle ABC △ A BC . Draw diameter A D AD A D through point A A A , connect B D BD B D .
Since ∠ A B D = 90 ° \angle ABD = 90° ∠ A B D = 90° (angle in semicircle) and ∠ D = ∠ C \angle D = \angle C ∠ D = ∠ C (angles subtended by same arc):
sin C = sin D = A B A D = c 2 R \sin C = \sin D = \frac{AB}{AD} = \frac{c}{2R} sin C = sin D = A D A B = 2 R c
Therefore:
c sin C = 2 R \frac{c}{\sin C} = 2R s i n C c = 2 R
Other relationships follow similarly.
Applications
1. Given Two Angles and One Side (AAS/ASA)
Example : In △ A B C \triangle ABC △ A BC , A = 60 ° A = 60° A = 60° , B = 45 ° B = 45° B = 45° , a = 3 a = \sqrt{3} a = 3 , find b b b .
Solution :
b sin B = a sin A \frac{b}{\sin B} = \frac{a}{\sin A} s i n B b = s i n A a
b = a ⋅ sin B sin A = 3 ⋅ sin 45 ° sin 60 ° = 2 b = \frac{a \cdot \sin B}{\sin A} = \frac{\sqrt{3} \cdot \sin 45°}{\sin 60°} = \sqrt{2} b = s i n A a ⋅ s i n B = s i n 60° 3 ⋅ s i n 45° = 2
2. Given Two Sides and One Angle (SSA)
Example : In △ A B C \triangle ABC △ A BC , a = 8 a = 8 a = 8 , b = 7 b = 7 b = 7 , A = 60 ° A = 60° A = 60° , find B B B .
Solution :
sin B = b ⋅ sin A a = 7 ⋅ sin 60 ° 8 = 7 3 16 \sin B = \frac{b \cdot \sin A}{a} = \frac{7 \cdot \sin 60°}{8} = \frac{7\sqrt{3}}{16} sin B = a b ⋅ s i n A = 8 7 ⋅ s i n 60° = 16 7 3
Note : This case may have two solutions (ambiguous case)
3. Side-Angle Conversion
From a sin A = b sin B \frac{a}{\sin A} = \frac{b}{\sin B} s i n A a = s i n B b :
a : b : c = sin A : sin B : sin C a : b : c = \sin A : \sin B : \sin C a : b : c = sin A : sin B : sin C
Number of Solutions (SSA Case)
Given a , b , A a, b, A a , b , A , to find B B B where sin B = b sin A a \sin B = \frac{b\sin A}{a} sin B = a b s i n A :
No solution : b sin A a > 1 \frac{b\sin A}{a} > 1 a b s i n A > 1
One solution :
b sin A a = 1 \frac{b\sin A}{a} = 1 a b s i n A = 1 (when B = 90 ° B = 90° B = 90° )
b ≥ a b \geq a b ≥ a (B is unique)
Two solutions : b sin A a < 1 \frac{b\sin A}{a} < 1 a b s i n A < 1 and b < a b < a b < a (one acute, one obtuse)
CSCA Practice Problems
💡 Note : The following problems are designed according to CSCA exam syllabus and Chinese standardized testing format.
[Example 1] Basic (Difficulty ★★★☆☆)
In △ A B C \triangle ABC △ A BC , a = 3 a = 3 a = 3 , b = 5 b = 5 b = 5 , sin A = 1 3 \sin A = \frac{1}{3} sin A = 3 1 , find sin B \sin B sin B .
Solution :
By the law of sines:
a sin A = b sin B \frac{a}{\sin A} = \frac{b}{\sin B} s i n A a = s i n B b
sin B = b ⋅ sin A a = 5 ⋅ 1 3 3 = 5 9 \sin B = \frac{b \cdot \sin A}{a} = \frac{5 \cdot \frac{1}{3}}{3} = \frac{5}{9} sin B = a b ⋅ s i n A = 3 5 ⋅ 3 1 = 9 5
Answer : sin B = 5 9 \sin B = \frac{5}{9} sin B = 9 5
Common Misconceptions
❌ Misconception 1: Forgetting to check number of solutions
Wrong : Not checking if there are 0, 1, or 2 solutions in SSA case
Correct : Must analyze the conditions to determine number of solutions
❌ Misconception 2: Wrong circumradius formula
Wrong : a sin A = R \frac{a}{\sin A} = R s i n A a = R
Correct : a sin A = 2 R \frac{a}{\sin A} = 2R s i n A a = 2 R
Study Tips
✅ Understand the essence : Sides are proportional to sines of opposite angles
✅ Memorize formula : a sin A = b sin B = c sin C = 2 R \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R s i n A a = s i n B b = s i n C c = 2 R
✅ Master applications : AAS, ASA, SSA cases
✅ Check solution count : Especially for SSA case
💡 Exam Tip : The Law of Sines is a core tool for solving triangles, mandatory in CSCA exams! Accounts for about 50% of triangle-solving problems.