Skip to main content
返回术语表
trigonometry难度:中级trigonometrygeometrytriangle
Share

正弦定理zhèngxián dìnglǐ

law of sines
4 分钟阅读
更新于 2025-11-02
已完成

Core Concept

The Law of Sines is an essential tool for solving triangles, describing the proportional relationship between side lengths and the sines of their opposite angles.

Theorem Statement

In ABC\triangle ABC, let a,b,ca, b, c be the sides opposite to angles A,B,CA, B, C respectively, and RR be the circumradius:

asinA=bsinB=csinC=2R\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R

Theorem Proof

Method 1: Area Method

Let SS be the area of ABC\triangle ABC:

S=12bcsinA=12acsinB=12absinCS = \frac{1}{2}bc\sin A = \frac{1}{2}ac\sin B = \frac{1}{2}ab\sin C

From the first two expressions: bcsinA=acsinBbc\sin A = ac\sin B asinA=bsinB\frac{a}{\sin A} = \frac{b}{\sin B}

Other relationships can be proved similarly.

Method 2: Circumcircle Method

Let RR be the circumradius of ABC\triangle ABC. Draw diameter ADAD through point AA, connect BDBD.

Since ABD=90°\angle ABD = 90° (angle in semicircle) and D=C\angle D = \angle C (angles subtended by same arc):

sinC=sinD=ABAD=c2R\sin C = \sin D = \frac{AB}{AD} = \frac{c}{2R}

Therefore: csinC=2R\frac{c}{\sin C} = 2R

Other relationships follow similarly.

Applications

1. Given Two Angles and One Side (AAS/ASA)

Example: In ABC\triangle ABC, A=60°A = 60°, B=45°B = 45°, a=3a = \sqrt{3}, find bb.

Solution: bsinB=asinA\frac{b}{\sin B} = \frac{a}{\sin A} b=asinBsinA=3sin45°sin60°=2b = \frac{a \cdot \sin B}{\sin A} = \frac{\sqrt{3} \cdot \sin 45°}{\sin 60°} = \sqrt{2}

2. Given Two Sides and One Angle (SSA)

Example: In ABC\triangle ABC, a=8a = 8, b=7b = 7, A=60°A = 60°, find BB.

Solution: sinB=bsinAa=7sin60°8=7316\sin B = \frac{b \cdot \sin A}{a} = \frac{7 \cdot \sin 60°}{8} = \frac{7\sqrt{3}}{16}

Note: This case may have two solutions (ambiguous case)

3. Side-Angle Conversion

From asinA=bsinB\frac{a}{\sin A} = \frac{b}{\sin B}: a:b:c=sinA:sinB:sinCa : b : c = \sin A : \sin B : \sin C

Number of Solutions (SSA Case)

Given a,b,Aa, b, A, to find BB where sinB=bsinAa\sin B = \frac{b\sin A}{a}:

  1. No solution: bsinAa>1\frac{b\sin A}{a} > 1
  2. One solution:
    • bsinAa=1\frac{b\sin A}{a} = 1 (when B=90°B = 90°)
    • bab \geq a (B is unique)
  3. Two solutions: bsinAa<1\frac{b\sin A}{a} < 1 and b<ab < a (one acute, one obtuse)

CSCA Practice Problems

💡 Note: The following problems are designed according to CSCA exam syllabus and Chinese standardized testing format.

[Example 1] Basic (Difficulty ★★★☆☆)

In ABC\triangle ABC, a=3a = 3, b=5b = 5, sinA=13\sin A = \frac{1}{3}, find sinB\sin B.

Solution:

By the law of sines: asinA=bsinB\frac{a}{\sin A} = \frac{b}{\sin B}

sinB=bsinAa=5133=59\sin B = \frac{b \cdot \sin A}{a} = \frac{5 \cdot \frac{1}{3}}{3} = \frac{5}{9}

Answer: sinB=59\sin B = \frac{5}{9}

Common Misconceptions

❌ Misconception 1: Forgetting to check number of solutions

Wrong: Not checking if there are 0, 1, or 2 solutions in SSA case

Correct: Must analyze the conditions to determine number of solutions

❌ Misconception 2: Wrong circumradius formula

Wrong: asinA=R\frac{a}{\sin A} = R

Correct: asinA=2R\frac{a}{\sin A} = 2R

Study Tips

  1. Understand the essence: Sides are proportional to sines of opposite angles
  2. Memorize formula: asinA=bsinB=csinC=2R\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R
  3. Master applications: AAS, ASA, SSA cases
  4. Check solution count: Especially for SSA case

💡 Exam Tip: The Law of Sines is a core tool for solving triangles, mandatory in CSCA exams! Accounts for about 50% of triangle-solving problems.