Skip to main content
返回术语表
functions难度:基础functionsparityeven
Share

奇偶性qī'ǒuxìng

parity (odd/even functions)
4 分钟阅读
更新于 2025-01-24
已完成

Core Concept

Parity describes the symmetry properties of a function. A function can be even, odd, or neither.

Prerequisite: For a function to have parity, its domain must be symmetric about the origin (if xx is in the domain, then x-x must also be in the domain).

Definitions

Even Function (偶函数)

A function ff is even if: f(x)=f(x)for all x in the domainf(-x) = f(x) \quad \text{for all } x \text{ in the domain}

Graphical property: The graph is symmetric about the y-axis.

Odd Function (奇函数)

A function ff is odd if: f(x)=f(x)for all x in the domainf(-x) = -f(x) \quad \text{for all } x \text{ in the domain}

Graphical property: The graph is symmetric about the origin.

Special Property of Odd Functions

If ff is odd and 00 is in the domain, then f(0)=0f(0) = 0.

Proof: f(0)=f(0)=f(0)f(0) = f(-0) = -f(0), so 2f(0)=02f(0) = 0, thus f(0)=0f(0) = 0.

Common Functions and Their Parity

FunctionParityVerification
y=xny = x^n (nn even)Even(x)n=xn(-x)^n = x^n
y=xny = x^n (nn odd)Odd(x)n=xn(-x)^n = -x^n
$y =x$
y=sinxy = \sin xOddsin(x)=sinx\sin(-x) = -\sin x
y=cosxy = \cos xEvencos(x)=cosx\cos(-x) = \cos x
y=tanxy = \tan xOddtan(x)=tanx\tan(-x) = -\tan x
y=axy = a^xNeitheraxaxa^{-x} \neq a^x and axaxa^{-x} \neq -a^x
y=logaxy = \log_a xNeitherDomain not symmetric

Methods to Determine Parity

Step-by-Step Process

  1. Check domain symmetry: Is x-x in domain whenever xx is?
  2. Calculate f(x)f(-x): Substitute x-x into the function
  3. Compare with f(x)f(x) and f(x)-f(x):
    • If f(x)=f(x)f(-x) = f(x) → Even
    • If f(x)=f(x)f(-x) = -f(x) → Odd
    • Otherwise → Neither

Example 1: Even Function

Determine the parity of f(x)=x42x2+1f(x) = x^4 - 2x^2 + 1.

Step 1: Domain is R\mathbb{R}, which is symmetric about origin. ✓

Step 2: f(x)=(x)42(x)2+1=x42x2+1=f(x)f(-x) = (-x)^4 - 2(-x)^2 + 1 = x^4 - 2x^2 + 1 = f(x)

Conclusion: ff is even.

Example 2: Odd Function

Determine the parity of f(x)=x3x2+1f(x) = \dfrac{x^3}{x^2 + 1}.

Step 1: Domain is R\mathbb{R}, symmetric about origin. ✓

Step 2: f(x)=(x)3(x)2+1=x3x2+1=x3x2+1=f(x)f(-x) = \dfrac{(-x)^3}{(-x)^2 + 1} = \dfrac{-x^3}{x^2 + 1} = -\dfrac{x^3}{x^2 + 1} = -f(x)

Conclusion: ff is odd.

Example 3: Neither

Determine the parity of f(x)=x+1f(x) = x + 1.

Step 1: Domain is R\mathbb{R}, symmetric. ✓

Step 2: f(x)=x+1f(-x) = -x + 1 f(x)=x+1f(x) = x + 1 f(x)=x1-f(x) = -x - 1

Since f(x)f(x)f(-x) \neq f(x) and f(x)f(x)f(-x) \neq -f(x):

Conclusion: ff is neither even nor odd.

CSCA Practice Problems

💡 Note: The following practice problems are designed based on the CSCA exam syllabus.

Example 1: Basic (Difficulty ★★☆☆☆)

Determine the parity of f(x)=x3xf(x) = x^3 - x.

Solution: f(x)=(x)3(x)=x3+x=(x3x)=f(x)f(-x) = (-x)^3 - (-x) = -x^3 + x = -(x^3 - x) = -f(x)

Answer: Odd function


Example 2: Intermediate (Difficulty ★★★☆☆)

If f(x)f(x) is an odd function and f(2)=3f(2) = 3, find f(2)+f(0)f(-2) + f(0).

Solution:

Since ff is odd:

  • f(2)=f(2)=3f(-2) = -f(2) = -3
  • f(0)=0f(0) = 0 (property of odd functions)

f(2)+f(0)=3+0=3f(-2) + f(0) = -3 + 0 = -3

Answer: 3-3


Example 3: Advanced (Difficulty ★★★★☆)

If f(x)=ax3+bx2+cx+df(x) = ax^3 + bx^2 + cx + d is an odd function, find the values of bb and dd.

Solution:

For odd function: f(x)=f(x)f(-x) = -f(x)

f(x)=a(x)3+b(x)2+c(x)+d=ax3+bx2cx+df(-x) = a(-x)^3 + b(-x)^2 + c(-x) + d = -ax^3 + bx^2 - cx + d

f(x)=ax3bx2cxd-f(x) = -ax^3 - bx^2 - cx - d

Comparing: ax3+bx2cx+d=ax3bx2cxd-ax^3 + bx^2 - cx + d = -ax^3 - bx^2 - cx - d

This requires: bx2=bx2bx^2 = -bx^2 and d=dd = -d

Therefore: b=0b = 0 and d=0d = 0

Answer: b=0b = 0, d=0d = 0


Example 4: Advanced (Difficulty ★★★★☆)

If f(x)=ln(x2+1+x)f(x) = \ln\left(\sqrt{x^2+1} + x\right), prove that f(x)f(x) is odd.

Solution:

f(x)=ln((x)2+1+(x))=ln(x2+1x)f(-x) = \ln\left(\sqrt{(-x)^2+1} + (-x)\right) = \ln\left(\sqrt{x^2+1} - x\right)

Now compute f(x)+f(x)f(x) + f(-x): f(x)+f(x)=ln(x2+1+x)+ln(x2+1x)f(x) + f(-x) = \ln\left(\sqrt{x^2+1} + x\right) + \ln\left(\sqrt{x^2+1} - x\right)

=ln[(x2+1+x)(x2+1x)]= \ln\left[\left(\sqrt{x^2+1} + x\right)\left(\sqrt{x^2+1} - x\right)\right]

=ln[(x2+1)x2]=ln(1)=0= \ln\left[(x^2+1) - x^2\right] = \ln(1) = 0

Therefore: f(x)=f(x)f(-x) = -f(x)

Conclusion: f(x)f(x) is odd.

Parity and Operations

Sum of Functions

ffggf+gf + g
EvenEvenEven
OddOddOdd
EvenOddNeither (generally)

Product of Functions

ffggfgf \cdot g
EvenEvenEven
OddOddEven
EvenOddOdd

Common Mistakes

❌ Mistake 1: Ignoring Domain Symmetry

Wrong: f(x)=xf(x) = \sqrt{x} is even because x0\sqrt{x} \geq 0

Correct: Domain [0,+)[0, +\infty) is not symmetric about origin, so parity is undefined. ✓

❌ Mistake 2: Forgetting f(0)=0f(0) = 0 for Odd Functions

If ff is odd and defined at x=0x = 0, then f(0)=0f(0) = 0.

❌ Mistake 3: Only Checking One Value

Wrong: f(1)=f(1)f(1) = f(-1), so ff is even. ✗

Correct: Must verify f(x)=f(x)f(-x) = f(x) for ALL xx in domain. ✓

Study Tips

  1. Check domain first: Symmetric about origin is required
  2. Use algebraic verification: Don't rely on graphs alone
  3. Remember special property: Odd functions pass through origin
  4. Know product rules: odd × odd = even

💡 Exam Tip: For polynomials, odd functions have only odd-degree terms, even functions have only even-degree terms!