Core Concept
Parity describes the symmetry properties of a function. A function can be even, odd, or neither.
Prerequisite : For a function to have parity, its domain must be symmetric about the origin (if x x x is in the domain, then − x -x − x must also be in the domain).
Definitions
Even Function (偶函数)
A function f f f is even if:
f ( − x ) = f ( x ) for all x in the domain f(-x) = f(x) \quad \text{for all } x \text{ in the domain} f ( − x ) = f ( x ) for all x in the domain
Graphical property : The graph is symmetric about the y-axis .
Odd Function (奇函数)
A function f f f is odd if:
f ( − x ) = − f ( x ) for all x in the domain f(-x) = -f(x) \quad \text{for all } x \text{ in the domain} f ( − x ) = − f ( x ) for all x in the domain
Graphical property : The graph is symmetric about the origin .
Special Property of Odd Functions
If f f f is odd and 0 0 0 is in the domain, then f ( 0 ) = 0 f(0) = 0 f ( 0 ) = 0 .
Proof : f ( 0 ) = f ( − 0 ) = − f ( 0 ) f(0) = f(-0) = -f(0) f ( 0 ) = f ( − 0 ) = − f ( 0 ) , so 2 f ( 0 ) = 0 2f(0) = 0 2 f ( 0 ) = 0 , thus f ( 0 ) = 0 f(0) = 0 f ( 0 ) = 0 .
Common Functions and Their Parity
Function Parity Verification y = x n y = x^n y = x n (n n n even)Even ( − x ) n = x n (-x)^n = x^n ( − x ) n = x n y = x n y = x^n y = x n (n n n odd)Odd ( − x ) n = − x n (-x)^n = -x^n ( − x ) n = − x n $y = x $ y = sin x y = \sin x y = sin x Odd sin ( − x ) = − sin x \sin(-x) = -\sin x sin ( − x ) = − sin x y = cos x y = \cos x y = cos x Even cos ( − x ) = cos x \cos(-x) = \cos x cos ( − x ) = cos x y = tan x y = \tan x y = tan x Odd tan ( − x ) = − tan x \tan(-x) = -\tan x tan ( − x ) = − tan x y = a x y = a^x y = a x Neither a − x ≠ a x a^{-x} \neq a^x a − x = a x and a − x ≠ − a x a^{-x} \neq -a^x a − x = − a x y = log a x y = \log_a x y = log a x Neither Domain not symmetric
Methods to Determine Parity
Step-by-Step Process
Check domain symmetry : Is − x -x − x in domain whenever x x x is?
Calculate f ( − x ) f(-x) f ( − x ) : Substitute − x -x − x into the function
Compare with f ( x ) f(x) f ( x ) and − f ( x ) -f(x) − f ( x ) :
If f ( − x ) = f ( x ) f(-x) = f(x) f ( − x ) = f ( x ) → Even
If f ( − x ) = − f ( x ) f(-x) = -f(x) f ( − x ) = − f ( x ) → Odd
Otherwise → Neither
Example 1: Even Function
Determine the parity of f ( x ) = x 4 − 2 x 2 + 1 f(x) = x^4 - 2x^2 + 1 f ( x ) = x 4 − 2 x 2 + 1 .
Step 1 : Domain is R \mathbb{R} R , which is symmetric about origin. ✓
Step 2 :
f ( − x ) = ( − x ) 4 − 2 ( − x ) 2 + 1 = x 4 − 2 x 2 + 1 = f ( x ) f(-x) = (-x)^4 - 2(-x)^2 + 1 = x^4 - 2x^2 + 1 = f(x) f ( − x ) = ( − x ) 4 − 2 ( − x ) 2 + 1 = x 4 − 2 x 2 + 1 = f ( x )
Conclusion : f f f is even .
Example 2: Odd Function
Determine the parity of f ( x ) = x 3 x 2 + 1 f(x) = \dfrac{x^3}{x^2 + 1} f ( x ) = x 2 + 1 x 3 .
Step 1 : Domain is R \mathbb{R} R , symmetric about origin. ✓
Step 2 :
f ( − x ) = ( − x ) 3 ( − x ) 2 + 1 = − x 3 x 2 + 1 = − x 3 x 2 + 1 = − f ( x ) f(-x) = \dfrac{(-x)^3}{(-x)^2 + 1} = \dfrac{-x^3}{x^2 + 1} = -\dfrac{x^3}{x^2 + 1} = -f(x) f ( − x ) = ( − x ) 2 + 1 ( − x ) 3 = x 2 + 1 − x 3 = − x 2 + 1 x 3 = − f ( x )
Conclusion : f f f is odd .
Example 3: Neither
Determine the parity of f ( x ) = x + 1 f(x) = x + 1 f ( x ) = x + 1 .
Step 1 : Domain is R \mathbb{R} R , symmetric. ✓
Step 2 :
f ( − x ) = − x + 1 f(-x) = -x + 1 f ( − x ) = − x + 1
f ( x ) = x + 1 f(x) = x + 1 f ( x ) = x + 1
− f ( x ) = − x − 1 -f(x) = -x - 1 − f ( x ) = − x − 1
Since f ( − x ) ≠ f ( x ) f(-x) \neq f(x) f ( − x ) = f ( x ) and f ( − x ) ≠ − f ( x ) f(-x) \neq -f(x) f ( − x ) = − f ( x ) :
Conclusion : f f f is neither even nor odd .
CSCA Practice Problems
💡 Note : The following practice problems are designed based on the CSCA exam syllabus.
Example 1: Basic (Difficulty ★★☆☆☆)
Determine the parity of f ( x ) = x 3 − x f(x) = x^3 - x f ( x ) = x 3 − x .
Solution :
f ( − x ) = ( − x ) 3 − ( − x ) = − x 3 + x = − ( x 3 − x ) = − f ( x ) f(-x) = (-x)^3 - (-x) = -x^3 + x = -(x^3 - x) = -f(x) f ( − x ) = ( − x ) 3 − ( − x ) = − x 3 + x = − ( x 3 − x ) = − f ( x )
Answer: Odd function
Example 2: Intermediate (Difficulty ★★★☆☆)
If f ( x ) f(x) f ( x ) is an odd function and f ( 2 ) = 3 f(2) = 3 f ( 2 ) = 3 , find f ( − 2 ) + f ( 0 ) f(-2) + f(0) f ( − 2 ) + f ( 0 ) .
Solution :
Since f f f is odd:
f ( − 2 ) = − f ( 2 ) = − 3 f(-2) = -f(2) = -3 f ( − 2 ) = − f ( 2 ) = − 3
f ( 0 ) = 0 f(0) = 0 f ( 0 ) = 0 (property of odd functions)
f ( − 2 ) + f ( 0 ) = − 3 + 0 = − 3 f(-2) + f(0) = -3 + 0 = -3 f ( − 2 ) + f ( 0 ) = − 3 + 0 = − 3
Answer: − 3 -3 − 3
Example 3: Advanced (Difficulty ★★★★☆)
If f ( x ) = a x 3 + b x 2 + c x + d f(x) = ax^3 + bx^2 + cx + d f ( x ) = a x 3 + b x 2 + c x + d is an odd function, find the values of b b b and d d d .
Solution :
For odd function: f ( − x ) = − f ( x ) f(-x) = -f(x) f ( − x ) = − f ( x )
f ( − x ) = a ( − x ) 3 + b ( − x ) 2 + c ( − x ) + d = − a x 3 + b x 2 − c x + d f(-x) = a(-x)^3 + b(-x)^2 + c(-x) + d = -ax^3 + bx^2 - cx + d f ( − x ) = a ( − x ) 3 + b ( − x ) 2 + c ( − x ) + d = − a x 3 + b x 2 − c x + d
− f ( x ) = − a x 3 − b x 2 − c x − d -f(x) = -ax^3 - bx^2 - cx - d − f ( x ) = − a x 3 − b x 2 − c x − d
Comparing: − a x 3 + b x 2 − c x + d = − a x 3 − b x 2 − c x − d -ax^3 + bx^2 - cx + d = -ax^3 - bx^2 - cx - d − a x 3 + b x 2 − c x + d = − a x 3 − b x 2 − c x − d
This requires: b x 2 = − b x 2 bx^2 = -bx^2 b x 2 = − b x 2 and d = − d d = -d d = − d
Therefore: b = 0 b = 0 b = 0 and d = 0 d = 0 d = 0
Answer: b = 0 b = 0 b = 0 , d = 0 d = 0 d = 0
Example 4: Advanced (Difficulty ★★★★☆)
If f ( x ) = ln ( x 2 + 1 + x ) f(x) = \ln\left(\sqrt{x^2+1} + x\right) f ( x ) = ln ( x 2 + 1 + x ) , prove that f ( x ) f(x) f ( x ) is odd.
Solution :
f ( − x ) = ln ( ( − x ) 2 + 1 + ( − x ) ) = ln ( x 2 + 1 − x ) f(-x) = \ln\left(\sqrt{(-x)^2+1} + (-x)\right) = \ln\left(\sqrt{x^2+1} - x\right) f ( − x ) = ln ( ( − x ) 2 + 1 + ( − x ) ) = ln ( x 2 + 1 − x )
Now compute f ( x ) + f ( − x ) f(x) + f(-x) f ( x ) + f ( − x ) :
f ( x ) + f ( − x ) = ln ( x 2 + 1 + x ) + ln ( x 2 + 1 − x ) f(x) + f(-x) = \ln\left(\sqrt{x^2+1} + x\right) + \ln\left(\sqrt{x^2+1} - x\right) f ( x ) + f ( − x ) = ln ( x 2 + 1 + x ) + ln ( x 2 + 1 − x )
= ln [ ( x 2 + 1 + x ) ( x 2 + 1 − x ) ] = \ln\left[\left(\sqrt{x^2+1} + x\right)\left(\sqrt{x^2+1} - x\right)\right] = ln [ ( x 2 + 1 + x ) ( x 2 + 1 − x ) ]
= ln [ ( x 2 + 1 ) − x 2 ] = ln ( 1 ) = 0 = \ln\left[(x^2+1) - x^2\right] = \ln(1) = 0 = ln [ ( x 2 + 1 ) − x 2 ] = ln ( 1 ) = 0
Therefore: f ( − x ) = − f ( x ) f(-x) = -f(x) f ( − x ) = − f ( x )
Conclusion: f ( x ) f(x) f ( x ) is odd.
Parity and Operations
Sum of Functions
f f f g g g f + g f + g f + g Even Even Even Odd Odd Odd Even Odd Neither (generally)
Product of Functions
f f f g g g f ⋅ g f \cdot g f ⋅ g Even Even Even Odd Odd Even Even Odd Odd
Common Mistakes
❌ Mistake 1: Ignoring Domain Symmetry
Wrong : f ( x ) = x f(x) = \sqrt{x} f ( x ) = x is even because x ≥ 0 \sqrt{x} \geq 0 x ≥ 0 ✗
Correct : Domain [ 0 , + ∞ ) [0, +\infty) [ 0 , + ∞ ) is not symmetric about origin, so parity is undefined. ✓
❌ Mistake 2: Forgetting f ( 0 ) = 0 f(0) = 0 f ( 0 ) = 0 for Odd Functions
If f f f is odd and defined at x = 0 x = 0 x = 0 , then f ( 0 ) = 0 f(0) = 0 f ( 0 ) = 0 .
❌ Mistake 3: Only Checking One Value
Wrong : f ( 1 ) = f ( − 1 ) f(1) = f(-1) f ( 1 ) = f ( − 1 ) , so f f f is even. ✗
Correct : Must verify f ( − x ) = f ( x ) f(-x) = f(x) f ( − x ) = f ( x ) for ALL x x x in domain. ✓
Study Tips
✅ Check domain first : Symmetric about origin is required
✅ Use algebraic verification : Don't rely on graphs alone
✅ Remember special property : Odd functions pass through origin
✅ Know product rules : odd × odd = even
💡 Exam Tip : For polynomials, odd functions have only odd-degree terms, even functions have only even-degree terms!