Skip to main content
返回术语表
functions难度:基础functionsmonotonicityincreasing
Share

单调性dāndiàoxìng

monotonicity
4 分钟阅读
更新于 2025-01-24
已完成

Core Concept

Monotonicity describes whether a function is consistently increasing or decreasing over an interval. A function is said to be monotonic on an interval if it is either entirely increasing or entirely decreasing throughout that interval.

Definitions

Increasing Function (递增函数)

A function ff is increasing on interval II if: x1,x2I:x1<x2f(x1)<f(x2)\forall x_1, x_2 \in I: \quad x_1 < x_2 \Rightarrow f(x_1) < f(x_2)

Equivalently: larger input → larger output.

Decreasing Function (递减函数)

A function ff is decreasing on interval II if: x1,x2I:x1<x2f(x1)>f(x2)\forall x_1, x_2 \in I: \quad x_1 < x_2 \Rightarrow f(x_1) > f(x_2)

Equivalently: larger input → smaller output.

Non-strict Monotonicity

  • Non-decreasing: x1<x2f(x1)f(x2)x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2)
  • Non-increasing: x1<x2f(x1)f(x2)x_1 < x_2 \Rightarrow f(x_1) \geq f(x_2)

Methods to Determine Monotonicity

Method 1: Definition Method (定义法)

  1. Take any x1,x2x_1, x_2 in the interval with x1<x2x_1 < x_2
  2. Calculate f(x1)f(x2)f(x_1) - f(x_2)
  3. Determine the sign of the difference:
    • If always negative → increasing
    • If always positive → decreasing

Example: Prove f(x)=x2f(x) = x^2 is increasing on (0,+)(0, +\infty).

For 0<x1<x20 < x_1 < x_2: f(x1)f(x2)=x12x22=(x1x2)(x1+x2)f(x_1) - f(x_2) = x_1^2 - x_2^2 = (x_1 - x_2)(x_1 + x_2)

Since x1<x2x_1 < x_2: (x1x2)<0(x_1 - x_2) < 0 Since x1,x2>0x_1, x_2 > 0: (x1+x2)>0(x_1 + x_2) > 0

Therefore: f(x1)f(x2)<0f(x_1) - f(x_2) < 0, meaning f(x1)<f(x2)f(x_1) < f(x_2).

Conclusion: f(x)=x2f(x) = x^2 is increasing on (0,+)(0, +\infty).

Method 2: Derivative Method (导数法)

For differentiable functions:

  • f(x)>0f'(x) > 0 on interval IIff is increasing on II
  • f(x)<0f'(x) < 0 on interval IIff is decreasing on II

Example: Find monotonic intervals of f(x)=x33xf(x) = x^3 - 3x.

f(x)=3x23=3(x21)=3(x1)(x+1)f'(x) = 3x^2 - 3 = 3(x^2 - 1) = 3(x-1)(x+1)

  • f(x)>0f'(x) > 0 when x<1x < -1 or x>1x > 1
  • f(x)<0f'(x) < 0 when 1<x<1-1 < x < 1

Monotonic intervals:

  • Increasing: (,1)(-\infty, -1) and (1,+)(1, +\infty)
  • Decreasing: (1,1)(-1, 1)

Common Functions and Their Monotonicity

FunctionIncreasing IntervalDecreasing Interval
y=kx+by = kx + b (k>0k > 0)(,+)(-\infty, +\infty)
y=kx+by = kx + b (k<0k < 0)(,+)(-\infty, +\infty)
y=x2y = x^2[0,+)[0, +\infty)(,0](-\infty, 0]
y=1xy = \dfrac{1}{x}(,0)(-\infty, 0), (0,+)(0, +\infty)
y=xy = \sqrt{x}[0,+)[0, +\infty)
y=axy = a^x (a>1a > 1)(,+)(-\infty, +\infty)
y=axy = a^x (0<a<10 < a < 1)(,+)(-\infty, +\infty)

CSCA Practice Problems

💡 Note: The following practice problems are designed based on the CSCA exam syllabus.

Example 1: Basic (Difficulty ★★☆☆☆)

Determine the monotonic intervals of f(x)=x2+4xf(x) = -x^2 + 4x.

Solution:

f(x)=(x24x)=(x2)2+4f(x) = -(x^2 - 4x) = -(x - 2)^2 + 4

This is a downward parabola with vertex at x=2x = 2.

  • Increasing: (,2](-\infty, 2]
  • Decreasing: [2,+)[2, +\infty)

Answer: Increasing on (,2](-\infty, 2], decreasing on [2,+)[2, +\infty)


Example 2: Intermediate (Difficulty ★★★☆☆)

Prove that f(x)=xx+1f(x) = \dfrac{x}{x+1} is increasing on (1,+)(-1, +\infty).

Solution:

Let 1<x1<x2-1 < x_1 < x_2.

f(x1)f(x2)=x1x1+1x2x2+1f(x_1) - f(x_2) = \dfrac{x_1}{x_1+1} - \dfrac{x_2}{x_2+1}

=x1(x2+1)x2(x1+1)(x1+1)(x2+1)= \dfrac{x_1(x_2+1) - x_2(x_1+1)}{(x_1+1)(x_2+1)}

=x1x2+x1x1x2x2(x1+1)(x2+1)= \dfrac{x_1x_2 + x_1 - x_1x_2 - x_2}{(x_1+1)(x_2+1)}

=x1x2(x1+1)(x2+1)= \dfrac{x_1 - x_2}{(x_1+1)(x_2+1)}

Since x1<x2x_1 < x_2: numerator <0< 0 Since x1,x2>1x_1, x_2 > -1: (x1+1)(x2+1)>0(x_1+1)(x_2+1) > 0

Therefore: f(x1)f(x2)<0f(x_1) - f(x_2) < 0, so f(x1)<f(x2)f(x_1) < f(x_2).

Conclusion: f(x)f(x) is increasing on (1,+)(-1, +\infty).


Example 3: Advanced (Difficulty ★★★★☆)

If f(x)=x22ax+1f(x) = x^2 - 2ax + 1 is increasing on [1,+)[1, +\infty), find the range of aa.

Solution:

f(x)=(xa)2+1a2f(x) = (x - a)^2 + 1 - a^2

The vertex is at x=ax = a.

For f(x)f(x) to be increasing on [1,+)[1, +\infty), the vertex must be at or to the left of x=1x = 1.

Therefore: a1a \leq 1

Answer: a1a \leq 1, or (,1](-\infty, 1]

Properties of Monotonic Functions

1. Composition Rules

ffggfgf \circ g
IncreasingIncreasingIncreasing
IncreasingDecreasingDecreasing
DecreasingIncreasingDecreasing
DecreasingDecreasingIncreasing

Memory aid: "Same → Increasing, Different → Decreasing"

2. Inverse Function

If ff is strictly monotonic, then f1f^{-1} exists and has the same monotonicity as ff.

Common Mistakes

❌ Mistake 1: Confusing Monotonic Interval with Domain

Wrong: y=1xy = \dfrac{1}{x} is decreasing on (,+)(-\infty, +\infty)

Correct: y=1xy = \dfrac{1}{x} is decreasing on (,0)(-\infty, 0) AND on (0,+)(0, +\infty) separately ✓

❌ Mistake 2: Combining Disconnected Intervals

Wrong: y=1xy = \dfrac{1}{x} is decreasing on (,0)(0,+)(-\infty, 0) \cup (0, +\infty)

Correct: State intervals separately: decreasing on (,0)(-\infty, 0) and on (0,+)(0, +\infty)

❌ Mistake 3: Ignoring Boundary in Proof

When proving monotonicity, ensure x1<x2x_1 < x_2 are both within the specified interval.

Study Tips

  1. Master the definition: x1<x2x_1 < x_2 implies what about f(x1)f(x_1) vs f(x2)f(x_2)?
  2. Know common functions: Memorize monotonicity of standard functions
  3. Use derivatives when applicable: Faster for complex functions
  4. Never combine disconnected intervals: List each interval separately

💡 Exam Tip: For quadratic functions, always find the vertex first. The monotonicity changes at the vertex!