Skip to main content
返回术语表
algebra难度:中级algebrainequalityabsolute-value
Share

绝对值不等式juéduìzhí bùděngshì

absolute value inequality
4 分钟阅读
更新于 2025-11-02
已完成

Core Concept

An Absolute Value Inequality contains absolute value symbols. Solving requires case analysis based on the definition or using geometric meaning of absolute value.

Definition

x={x,x0x,x<0|x| = \begin{cases} x, & x \geq 0 \\ -x, & x < 0 \end{cases}

Geometric Meaning

x|x| represents distance from point xx to origin on number line. xa|x - a| represents distance from point xx to point aa.

Basic Types

Type 1: x<a|x| < a

x<aa<x<a(a>0)|x| < a \Leftrightarrow -a < x < a \quad (a > 0)

Example: Solve x2<3|x - 2| < 3

Solution: 3<x2<31<x<5-3 < x - 2 < 3 \Rightarrow -1 < x < 5


Type 2: x>a|x| > a

x>ax<a or x>a(a>0)|x| > a \Leftrightarrow x < -a \text{ or } x > a \quad (a > 0)

Example: Solve 2x+1>5|2x + 1| > 5

Solution: 2x+1<5 or 2x+1>52x + 1 < -5 \text{ or } 2x + 1 > 5 x<3 or x>2x < -3 \text{ or } x > 2


Type 3: Sum of Distances

xa+xbab|x - a| + |x - b| \geq |a - b|

Equality holds when xx is between aa and bb.

Triangle Inequality

a+ba+b|a + b| \leq |a| + |b|

Equality holds when ab0ab \geq 0.

Common Misconceptions

❌ Misconception 1: Wrong solution for x<a|x| < a

Wrong: x<2x<2|x| < 2 \Rightarrow x < -2 or x<2x < 2

Correct: x<22<x<2|x| < 2 \Rightarrow -2 < x < 2

❌ Misconception 2: Union vs intersection

Wrong: x>22<x<2|x| > 2 \Rightarrow -2 < x < 2

Correct: x>2x<2|x| > 2 \Rightarrow x < -2 or x>2x > 2

Study Tips

  1. Master basic formulas: x<a|x| < a and x>a|x| > a
  2. Understand geometry: Distance concept
  3. Practice case analysis: Zero-point method
  4. Remember triangle inequality: a+ba+b|a + b| \leq |a| + |b|

💡 Exam Tip: Absolute value inequalities are high-frequency in CSCA exams!