Skip to main content
返回术语表
algebra难度:基础algebrasequences
Bagikan

等比数列děngbǐ shùliè

geometric sequence
4 分钟阅读
更新于 2025-10-29
已完成

Konsep Dasar

Sebuah deret geometri adalah deret di mana, mulai dari suku kedua, rasio setiap suku terhadap suku sebelumnya sama dengan konstanta yang sama. Konstanta ini disebut rasio umum, biasanya dilambangkan denganqq

.

Definisi Matematis

Untuk sebuah deret{an}\{a_n\}

, jika terdapat konstantaq0q \neq 0

sehingga:

an+1an=q(nN,an0)\frac{a_{n+1}}{a_n} = q \quad (n \in \mathbb{N}^*, a_n \neq 0)

maka{an}\{a_n\}

disebut deret geometri dengan rasio umumqq

.

Rumus Suku Umum

an=a1qn1a_n = a_1 \cdot q^{n-1}

di mana: -a1a_1

adalah suku pertama -qq

adalah rasio umum -nn

adalah nomor suku

Rumus Jumlah

**Ketikaq1q \neq 1

**:

Sn=a1(1qn)1q=a1anq1qS_n = \frac{a_1(1 - q^n)}{1 - q} = \frac{a_1 - a_n q}{1 - q}

**Ketikaq=1q = 1

**:

Sn=na1S_n = n \cdot a_1

Deret Geometris vs Deret Aritmetika

FiturGeometrisAritmetika
DefinisiRasio antara suku-suku berturut-turut konstanSelisih antara suku-suku berturut-turut konstan
Notasian+1an=q\frac{a_{n+1}}{a_n} = q

|an+1an=da_{n+1} - a_n = d

| | Suku Umum |an=a1qn1a_n = a_1 \cdot q^{n-1}

|an=a1+(n1)da_n = a_1 + (n-1)d

| | Rata-rata |b2=acb^2 = ac

(rata-rata geometris) |b=a+c2b = \frac{a+c}{2}

(rata-rata aritmetika) |

Aplikasi Dunia Nyata

Aplikasi 1: Pembelahan Sel

Masalah: Sebuah sel membelah setiap jam menjadi 2 sel. Berapa banyak sel setelah 8 jam?

Solusi:

  • Istilaha1=1a_1 = 1

pertama

  • Rasio umumq=2q = 2

  • Setelah 8 jam:a9=1×28=256a_9 = 1 \times 2^{8} = 256

sel

Aplikasi 2: Bunga Majemuk

Masalah: $10.000 disimpan dengan bunga majemuk 5% per tahun. Total setelah 10 tahun?

Penyelesaian: a11=10000×1.0510$16,288.95a_{11} = 10000 \times 1.05^{10} \approx \$16,288.95

Aplikasi 3: Peluruhan Radioaktif

Masalah: Zat mengalami peluruhan 20% per tahun. Massa awal 100g, sisa setelah 5 tahun?

Penyelesaian: a6=100×0.85=32.768 ga_6 = 100 \times 0.8^5 = 32.768 \text{ g}

Soal Latihan CSCA

> 💡 Catatan: Soal-soal latihan berikut dirancang berdasarkan kurikulum ujian CSCA dan format ujian standar Tiongkok untuk membantu siswa familiar dengan jenis soal dan pendekatan pemecahan masalah.

Contoh 1: Dasar (Kesulitan ★★☆☆☆)

Dalam deret{an}\{a_n\}

geometri ,a2=6a_2 = 6

dana5=48a_5 = 48

. Temukan rasio umumqq

.

Pilihan:

  • A. 2
  • B. 3
  • C. 4
  • D. 8

Solusi Terperinci:

a5=a2q3a_5 = a_2 \cdot q^{3} 48=6q348 = 6 \cdot q^3 q3=8q^3 = 8 q=2q = 2

Jawaban: A


Contoh 2: Menengah (Kesulitan ★★★☆☆)

Dalam deret{an}\{a_n\}

geometri ,a1+a2=3a_1 + a_2 = 3

dana2+a3=6a_2 + a_3 = 6

. Temukana5a_5

.

Solusi Terperinci:

a1(1+q)=3a_1(1 + q) = 3

... ①a1q(1+q)=6a_1 q(1 + q) = 6

... ②

Bagi ②÷①: q=2q = 2

Substitusikan ke ①:

Oleha1=1a_1 = 1

karena itu: a5=1×24=16a_5 = 1 \times 2^4 = 16

Jawaban: 16

Kesalahan Umum

❌ Kesalahan 1: Deret geometri selalu bertambah

Koreksi: Pertumbuhan bergantung pada dana1a_1

qq

: -a1>0,q>1a_1 > 0, q > 1

→ bertambah -a1>0,0<q<1a_1 > 0, 0 < q < 1

→ berkurang -q<0q < 0

→ berganti tanda

❌ Kesalahan 2: Rasio umum bisa nol

Koreksi:q0q \neq 0

, jika tidak, semua suku mulai dari suku kedua akan nol.

❌ Kesalahan 3: Mengacaukan rata-rata geometris dan aritmetika

Koreksi:

  • Rata-rata geometris: b2=acb^2 = ac

  • Rata-rata aritmetika: b=a+c2b = \frac{a+c}{2}

Jangan campurkan keduanya!

❌ Kesalahan 4: Lupa mengklasifikasikan saat menjumlahkan

Koreksi: Selalu pertimbangkanq=1q = 1

danq1q \neq 1

terpisah saat mencari jumlah.

Tips Belajar

  1. Bandingkan dengan deret aritmetika: Pahami "rasio" vs "selisih"

  2. Kuasai rumus: Hafalkan rumus suku umum dan rumus jumlah

  3. Analisis kasus: Pertimbangkan kasus-kasus berbeda untukqq

  4. Aplikasi nyata: Pembelahan sel, bunga majemuk, dan peluruhan adalah model-model tipikal


💡 Tips Ujian: Deret geometri dan deret aritmetika sama pentingnya dalam ujian CSCA, masing-masing menyumbang sekitar 50% dari soal deret. Pelajari keduanya secara komparatif!

相关术语

前置知识 - 建议先学习

相关术语 - 一起学习效果更好

对比学习 - 容易混淆,注意区别