Skip to main content
返回术语表
functions难度:基础functionslogarithm
Share

对数函数duìshù hánshù

logarithmic function
5 分钟阅读
更新于 2025-11-02
已完成

Core Concept

A Logarithmic Function is the inverse of an exponential function, with the form y=logaxy = \log_a x (a>0,a1a > 0, a \neq 1).

Definition

If ay=xa^y = x (a>0,a1a > 0, a \neq 1), then yy is called the logarithm of xx to base aa: y=logaxy = \log_a x

Where:

  • aa is the base
  • xx is the argument
  • yy is the logarithm

Properties

1. Domain and Range

  • Domain: (0,+)(0, +\infty)
  • Range: R\mathbb{R}

2. Fixed Point

All logarithmic functions pass through (1,0)(1, 0): loga1=0\log_a 1 = 0

3. Monotonicity

  • When a>1a > 1: y=logaxy = \log_a x is increasing on (0,+)(0, +\infty)
  • When 0<a<10 < a < 1: y=logaxy = \log_a x is decreasing on (0,+)(0, +\infty)

Logarithm Laws

For a>0,a1a > 0, a \neq 1; M>0,N>0M > 0, N > 0:

1. Product Rule

loga(MN)=logaM+logaN\log_a (MN) = \log_a M + \log_a N

2. Quotient Rule

logaMN=logaMlogaN\log_a \frac{M}{N} = \log_a M - \log_a N

3. Power Rule

logaMn=nlogaM\log_a M^n = n\log_a M

4. Change of Base Formula

logab=logcblogca\log_a b = \frac{\log_c b}{\log_c a}

5. Reciprocal Relationship

logablogba=1\log_a b \cdot \log_b a = 1

6. Chain Rule

logablogbc=logac\log_a b \cdot \log_b c = \log_a c

Special Logarithms

Common Logarithm

Base 10, denoted lgx\lg x: lgx=log10x\lg x = \log_{10} x

Natural Logarithm

Base ee (e2.71828e \approx 2.71828), denoted lnx\ln x: lnx=logex\ln x = \log_e x

CSCA Practice Problems

[Example 1] Basic (Difficulty ★★☆☆☆)

Calculate: log28+log327\log_2 8 + \log_3 27

Solution: log28=log223=3\log_2 8 = \log_2 2^3 = 3 log327=log333=3\log_3 27 = \log_3 3^3 = 3 Answer: 6\text{Answer: } 6

Common Misconceptions

❌ Misconception 1: Wrong logarithm law

Wrong: loga(M+N)=logaM+logaN\log_a (M + N) = \log_a M + \log_a N

Correct: loga(MN)=logaM+logaN\log_a (MN) = \log_a M + \log_a N (product rule)

❌ Misconception 2: Forgetting argument must be positive

Wrong: log2(4)\log_2 (-4) is defined

Correct: Argument must be >0> 0, so log2(4)\log_2 (-4) is undefined

Study Tips

  1. Understand definition: Logarithm is inverse of exponentiation
  2. Memorize laws: Product, quotient, power, change of base
  3. Check domain: Argument >0> 0, base >0> 0 and 1\neq 1
  4. Practice: Master calculation techniques

💡 Exam Tip: Logarithmic functions are mandatory in CSCA! Must master logarithm laws. Accounts for about 20% of function problems.