Skip to main content
返回术语表
set-theory难度:基础set-theorycomplementsets
Share

补集bǔjí

complement
3 分钟阅读
更新于 2025-01-24
已完成

Core Concept

The complement of a set A, written as UA\complement_U A or A\overline{A} or AcA^c, is the set of all elements in the universal set U that are NOT in A.

Mathematical Definition

UA={xxU and xA}\complement_U A = \{x | x \in U \text{ and } x \notin A\}

The complement contains exactly those elements that belong to the universal set but not to A.

Notation Variants

  • UA\complement_U A - Standard notation emphasizing universal set
  • A\overline{A} - Bar notation
  • AcA^c or AA' - Prime/superscript notation
  • UAU - A - Set difference notation

Visual Representation

In a Venn diagram, the complement is the region outside set A but inside the universal set.

  U: [#############]
     [####]  A  [  ]

The shaded region [####] represents UA\complement_U A.

Key Properties

1. Complement of Complement

U(UA)=A\complement_U(\complement_U A) = A

2. Complement of Universal Set

UU=\complement_U U = \emptyset

3. Complement of Empty Set

U=U\complement_U \emptyset = U

4. Union with Complement

AUA=UA \cup \complement_U A = U

5. Intersection with Complement

AUA=A \cap \complement_U A = \emptyset

6. De Morgan's Laws

U(AB)=UAUB\complement_U(A \cup B) = \complement_U A \cap \complement_U B U(AB)=UAUB\complement_U(A \cap B) = \complement_U A \cup \complement_U B

Worked Examples

Example 1: Finite Sets

Given: U = {1, 2, 3, 4, 5, 6}, A = {2, 4, 6}

Find: UA\complement_U A

Solution: Elements in U but not in A: 1, 3, 5

Answer: UA\complement_U A = {1, 3, 5}

Example 2: Real Number Sets

Given: U = ℝ, A = {x | x ≥ 2}

Find: UA\complement_U A

Solution: Real numbers NOT ≥ 2, meaning < 2

Answer: UA\complement_U A = {x | x < 2} = (-∞, 2)

Example 3: Interval Complement

Given: U = ℝ, A = (-1, 3]

Find: UA\complement_U A

Solution: All reals except those in (-1, 3]

Answer: UA\complement_U A = (-∞, -1] ∪ (3, +∞)

CSCA Practice Problems

💡 Note: The following practice problems are designed based on the CSCA exam syllabus.

Example 1: Basic (Difficulty ★★☆☆☆)

If U = {1, 2, 3, 4, 5} and A = {1, 3, 5}, find UA\complement_U A.

Options:

  • A. {1, 3, 5}
  • B. {2, 4}
  • C. {1, 2, 3, 4, 5}
  • D. ∅

Solution: Elements in U but not in A: 2, 4

Answer: B


Example 2: Intermediate (Difficulty ★★★☆☆)

Given U = ℝ, A = {x | x² - 4 ≤ 0}, find UA\complement_U A.

Solution:

First, solve the inequality: x240x² - 4 ≤ 0 (x2)(x+2)0(x-2)(x+2) ≤ 0 A=[2,2]A = [-2, 2]

Complement is all reals outside this interval: UA=(,2)(2,+)\complement_U A = (-\infty, -2) \cup (2, +\infty)

Answer: (,2)(2,+)(-\infty, -2) \cup (2, +\infty)


Example 3: Advanced (Difficulty ★★★★☆)

If U = ℝ, A = {x | x > 1}, B = {x | x > 2}, find UAB\complement_U A \cup B.

Solution:

UA\complement_U A = {x | x ≤ 1} = (-∞, 1] B = {x | x > 2} = (2, +∞)

UAB=(,1](2,+)\complement_U A \cup B = (-\infty, 1] \cup (2, +\infty)

Answer: (,1](2,+)(-\infty, 1] \cup (2, +\infty)

De Morgan's Laws in Detail

Law 1: Complement of Union

U(AB)=UAUB\complement_U(A \cup B) = \complement_U A \cap \complement_U B

Example: If A = {1, 2}, B = {2, 3}, U = {1, 2, 3, 4}

  • A ∪ B = {1, 2, 3}
  • U(AB)\complement_U(A \cup B) = {4}
  • UA\complement_U A = {3, 4}, UB\complement_U B = {1, 4}
  • UAUB\complement_U A \cap \complement_U B = {4} ✓

Law 2: Complement of Intersection

U(AB)=UAUB\complement_U(A \cap B) = \complement_U A \cup \complement_U B

Common Mistakes

❌ Mistake 1: Forgetting the Universal Set

Wrong: A\complement A = {all elements not in A} ✗

Correct: UA\complement_U A = {elements in U but not in A} ✓

❌ Mistake 2: Wrong Interval Boundary

Wrong: If A = [1, 3], then RA\complement_\mathbb{R} A = (-∞, 1] ∪ [3, +∞) ✗

Correct: RA\complement_\mathbb{R} A = (-∞, 1) ∪ (3, +∞) ✓

❌ Mistake 3: De Morgan Sign Error

Wrong: (AB)\complement(A \cup B) = AB\complement A \cup \complement B

Correct: (AB)\complement(A \cup B) = AB\complement A \cap \complement B

Study Tips

  1. Always identify U first: The universal set determines the complement
  2. Flip boundaries for intervals: Open ↔ closed when taking complement
  3. Master De Morgan's Laws: "Break the bar, change the sign"
  4. Double complement returns original: (A)=A\complement(\complement A) = A

💡 Exam Tip: When taking complements of intervals, remember: closed boundary becomes open, and open becomes closed!