20. An oscillator moves in simple harmonic motion along the $x$ axis with its equilibrium at the origin. The displacement of the oscillator at $t = 0$ is $- 0.2 \mathrm {~m} , ~ t = 1 \mathrm {~s}$.
The displacement of the oscillator at $- 0.2 \mathrm {~m} , ~ t = 1 \mathrm {~s}$ is 0.2 m. Then ( )
- A. A. If the amplitude is ${ } _ { 0.2 \mathrm {~m} }$, the period of the oscillator may be $\frac { 1 } { 3 } \mathrm {~s}$
- B. B. If the amplitude is ${ } _ { 0.2 \mathrm {~m} }$, the period of the oscillator may be $\frac { 4 } { 5 } \mathrm {~s}$
- C. C. If the amplitude is 0.4 m, the period of the oscillator may be $\frac { 6 } { 11 } \mathrm {~s}$
- D. D. If the amplitude is 0.4 m, the period of the oscillator may be $\frac { 5 } { 13 } \mathrm {~s}$
Answer: C
Solution: AB. If the amplitude is 0.2 m, then
$$
n T + \frac { T } { 2 } = 1 \mathrm {~s} \quad ( n = 0,1,2,3 \cdots )
$$
then
$$
T = \frac { 2 } { 2 n + 1 } \mathrm {~s} ( n = 0,1,2,3 \cdots )
$$
The period of the oscillator cannot be $\frac { 1 } { 3 } \mathrm {~s}$ or $\frac { 4 } { 5 } \mathrm {~s}$, option AB is wrong;
CD. If the amplitude is 0.4 m, according to
$$
0.4 \times \sin \left( \frac { 2 \pi } { T } \times \frac { T } { 12 } \right) \mathrm { m } = 0.2 \mathrm {~m}
$$
then we have
$$
n T + \frac { T } { 2 } = 1 \mathrm {~s} \quad ( n = 0,1,2,3 \ldots )
$$
can be obtained
$$
T = \frac { 2 } { 2 n + 1 } \mathrm {~s} ( n = 0,1,2,3 \ldots )
$$
Or
$$
n T + \frac { T } { 6 } = 1 \mathrm {~s} ( n = 0,1,2,3 \ldots )
$$
can be obtained
$$
T = \frac { 6 } { 6 n + 1 } \mathrm {~s} ( n = 0,1,2,3 \ldots )
$$
Or
$$
n T + \frac { 5 T } { 6 } = 1 \mathrm {~s} \quad ( n = 0,1,2,3 \ldots )
$$
can be obtained
$$
T = \frac { 6 } { 6 n + 5 } \mathrm {~s} ( n = 0,1,2,3 \ldots )
$$
which is found in the
$$
T = \frac { 6 } { 6 n + 5 } \mathrm {~s} ( n = 0,1,2,3 \ldots )
$$
expression, when $n = 1$
$$
T = \frac { 6 } { 11 } \mathrm {~s}
$$
But it is impossible to equal $\frac { 5 } { 13 } \mathrm {~s}$ in all three expressions, option C is correct and D is wrong.