Skip to main content

Vector and Complex Number - Practice Questions (40)

Question 1: 1. The vector $\vec { a } = \left( \frac { \sqrt { 3 } } { 2 } , 1 \right) , b = ( - \sqrt { 3 } , 0...

1. The vector $\vec { a } = \left( \frac { \sqrt { 3 } } { 2 } , 1 \right) , b = ( - \sqrt { 3 } , 0 )$ is known, and if $( a + \lambda b ) \perp b$, then $\lambda =$

  • A. A. $\frac { 1 } { 2 }$
  • B. B. $- \frac { 1 } { 2 }$
  • C. C. $\frac { \sqrt { 3 } } { 6 }$
  • D. D. $- \frac { \sqrt { 3 } } { 6 }$

Answer: A

Solution: $\vec { a } + \lambda \vec { b } = \left( \frac { \sqrt { 3 } } { 2 } - \sqrt { 3 } \lambda , 1 \right)$ because $( a + \lambda b ) \perp b$. So $- \sqrt { 3 } \times \left( \frac { \sqrt { 3 } } { 2 } - \sqrt { 3 } \lambda \right) = 0$, we have $\lambda = \frac { 1 } { 2 }$.

Question 2: 2. Let $i z = 3 + 4 i$, then $z =$

2. Let $i z = 3 + 4 i$, then $z =$

  • A. A. $- 4 - 3 i$
  • B. B. $- 4 + 3 \mathrm { i }$
  • C. C. $4 - 3 \mathrm { i }$
  • D. D. $4 + 3 \mathrm { i }$

Answer: C

Solution: by $Z = \frac { 4 \mathrm { i } - 3 \mathrm { i } ^ { 2 } } { \mathrm { i } } = 4 - 3 \mathrm { i }$.

Question 3: 3. If ${ } ^ { Z ( - 3 + \mathrm { i } ) = 10 }$, then $Z =$

3. If ${ } ^ { Z ( - 3 + \mathrm { i } ) = 10 }$, then $Z =$

  • A. A. $3 + \mathrm { i }$
  • B. B. $- 3 - \mathrm { i }$
  • C. C. $- 3 + \mathrm { i }$
  • D. D. 3- i

Answer: B

Solution: From $z ( - 3 + i ) = 10$ to $z = \frac { 10 } { - 3 + i } = \frac { 10 ( - 3 - i ) } { ( - 3 + i ) ( - 3 - i ) } = - 3 - i$.

Question 4: 4. The point in the complex plane corresponding to the complex number $\frac { 5 i } { 3 - i }$ ($i$...

4. The point in the complex plane corresponding to the complex number $\frac { 5 i } { 3 - i }$ ($i$ in imaginary units) is located at

  • A. A. first quadrant (of the coordinate plane, where both x and y are positive)
  • B. B. second quadrant (of the coordinate plane, where both x and y are positive)
  • C. C. third quadrant (of the coordinate plane, where both x and y are positive)
  • D. D. fourth quadrant (of the coordinate plane, where both x and y are positive)

Answer: B

Solution: Because $\frac { 5 i } { 3 - i } = \frac { 5 i \times ( 3 + i ) } { ( 3 - i ) ( 3 + i ) } = \frac { i ( 3 + i ) } { 2 } = \frac { - 1 + 3 i } { 2 } = - \frac { 1 } { 2 } + \frac { 3 } { 2 } i$. So the coordinates of the point in the complex plane corresponding to the complex number $\frac { 5 i } { 3 - i }$ is $\left( - \frac { 1 } { 2 } , \frac { 3 } { 2 } \right)$ in the second quadrant.

Question 5: 5. If $a = ( - 2 , - 3,1 ) , b = ( 4,0,8 ) , c = ( - 4 , - 6,2 )$ is known, then the following concl...

5. If $a = ( - 2 , - 3,1 ) , b = ( 4,0,8 ) , c = ( - 4 , - 6,2 )$ is known, then the following conclusion is true

  • A. A. $a \| c , b \| c$
  • B. B. $a \| b , a \perp c$
  • C. C. $a \| c , a \perp b$
  • D. D. None of the above is true.

Answer: C

Solution: From the question: $c = 2 a , a \cdot b = - 2 \times 4 + 1 \times 8 = 0$, so $a \| c , a \perp b$.

Question 6: 6. If $a = ( 3,2,5 ) , b = ( 4 , - 1 , x )$ is known and $a \perp b$ is known, then $x =$ is known.

6. If $a = ( 3,2,5 ) , b = ( 4 , - 1 , x )$ is known and $a \perp b$ is known, then $x =$ is known.

  • A. A. $\frac { 1 } { 2 }$
  • B. B. 2
  • C. C. $- \frac { 1 } { 2 }$
  • D. D. - 2

Answer: D

Solution: It is known that $a = ( 3,2,5 ) , b = ( 4 , - 1 , x )$ , and $a \perp b$ . So $a \cdot b = 3 \times 4 + 2 \times ( - 1 ) + 5 x = 0$ , which gives $x = - 2$ .

Question 7: 7. It is known that the complex number ${ } _ { Z }$ satisfies $\frac { 1 - 2 \mathrm { i } } { Z } ...

7. It is known that the complex number ${ } _ { Z }$ satisfies $\frac { 1 - 2 \mathrm { i } } { Z } = \mathrm { i }$, then the conjugate complex of the complex number ${ } _ { Z }$ corresponds to a point in the complex plane at

  • A. A. first quadrant (of the coordinate plane, where both x and y are positive)
  • B. B. second quadrant (of the coordinate plane, where both x and y are positive)
  • C. C. third quadrant (of the coordinate plane, where both x and y are positive)
  • D. D. fourth quadrant (of the coordinate plane, where both x and y are positive)

Answer: B

Solution: $z = \frac { 1 - 2 i } { i } = \frac { i ( 1 - 2 i ) } { i ^ { 2 } } = - i - 2$, then ${ } _ { z = i - 2 }$, the corresponding point is in the second quadrant.

Question 8: 8. Let ${ } ^ { i }$ be an imaginary unit, and let the complex number ${ } ^ { Z = i ( 1 + i ) }$ be...

8. Let ${ } ^ { i }$ be an imaginary unit, and let the complex number ${ } ^ { Z = i ( 1 + i ) }$ be ${ } ^ { \bar { Z } }$, then the imaginary part of ${ } ^ { \bar { Z } }$ is ( )

  • A. A. - 1
  • B. B. 1
  • C. C. $- i$
  • D. D. i

Answer: A

Solution: From the question: $$ z = i ( 1 + i ) = - 1 + i $$ So $\bar { z } = - 1 - i$, so the imaginary part of $\bar { z }$ is - 1

Question 9: 9. If the plane vector ${ } ^ { a = ( 1,1 ) , b = ( - 2,1 ) }$ is known, the projection vector of th...

9. If the plane vector ${ } ^ { a = ( 1,1 ) , b = ( - 2,1 ) }$ is known, the projection vector of the vector $a ^ { a }$ on ${ } ^ { b }$ is ( )

  • A. A. $\left( \frac { 1 } { 2 } , \frac { 1 } { 2 } \right)$
  • B. B. $\left( - \frac { 1 } { 2 } , - \frac { 1 } { 2 } \right)$
  • C. C. $\left( - \frac { 2 } { 5 } , \frac { 1 } { 5 } \right)$
  • D. D. $\left( \frac { 2 } { 5 } , - \frac { 1 } { 5 } \right)$

Answer: D

Solution: Since $a = ( 1,1 ) , b = ( - 2,1 )$, $a \cdot b = - 1 , | b | = \sqrt { 5 }$, the projection vector of the vector $_ { a }$ on $_ { b }$ is $\frac { a \cdot h } { | b | } \cdot \frac { b } { | b | } = - \frac { 1 } { 5 } ( - 2,1 ) = \left( \frac { 2 } { 5 } , - \frac { 1 } { 5 } \right)$.

Question 10: 10. It is known that the vectors $a = ( 2 , - 1 ) , b = ( - 2 t , 3 )$ , and $a / / ( a - 2 b )$ , t...

10. It is known that the vectors $a = ( 2 , - 1 ) , b = ( - 2 t , 3 )$ , and $a / / ( a - 2 b )$ , then $t =$

  • A. A. - 2
  • B. B. 2
  • C. C. - 3
  • D. D. 3

Answer: D

Solution: Since $a = ( 2 , - 1 ) , b = ( - 2 t , 3 )$, $a - 2 b = ( 2 + 4 t , - 7 )$, from $^ { a / / ( a - 2 b ) }$, we have $- 2 - 4 t = - 14$, which solves $t = 3$.

Question 11: 11. If $O A = ( 1 , - 2 ) , O B = ( 1 , - 1 )$, then $A B$ is equal to

11. If $O A = ( 1 , - 2 ) , O B = ( 1 , - 1 )$, then $A B$ is equal to

  • A. A. $( - 2,3 )$
  • B. B. $( 0,1 )$
  • C. C. $( - 1,2 )$
  • D. D. $( 2 , - 3 )$

Answer: B

Solution: $A B = O B - O A = ( 1 , - 1 ) - ( 1 , - 2 ) = ( 0,1 )$.

Question 12: 12. As shown in the figure, in the positive triangle $A B C$, $P , Q , R$ is the midpoint of $A B , ...

12. As shown in the figure, in the positive triangle $A B C$, $P , Q , R$ is the midpoint of $A B , B C , A C$, respectively, and the vector equal to the vector ${ } ^ { P Q }$ is ( ) ![](/images/questions/vector-complex/image-001.jpg)

  • A. A. $P R$ with $Q R$
  • B. B. $A R$ with $R C$
  • C. C. $R A$ with $C R$
  • D. D. $P A$ with $Q R$

Answer: B

Solution: Vectors are equal, i.e., the moduli are equal in length and the directions are the same. According to the question, $P Q$ is the median of the triangle, so $P Q / / A C , P Q = \frac { 1 } { 2 } A C$, which is $P Q = A R = R C$. Therefore ${ } ^ { A R }$ and ${ } ^ { R C }$ are vectors equal to ${ } ^ { P Q }$.

Question 13: 13. If the complex numbers $z$ and $( z + 2 ) ^ { 2 } - 8 \mathrm { i }$ are pure imaginary numbers,...

13. If the complex numbers $z$ and $( z + 2 ) ^ { 2 } - 8 \mathrm { i }$ are pure imaginary numbers, then $z$ is equal to

  • A. A. 2 i
  • B. B. - 2
  • C. C. $\pm 2 \mathrm { i }$
  • D. D. - 2 i

Answer: D

Solution: From the question, let $z = b \mathrm { i } ( b \in \mathrm { R } , b \neq 0 )$ be $( z + 2 ) ^ { 2 } - 8 \mathrm { i } = ( b \mathrm { i } + 2 ) ^ { 2 } - 8 \mathrm { i } = 4 - b ^ { 2 } + ( 4 b - 8 ) \mathrm { i }$. and $^ { ( z + 2 ) ^ { 2 } - 8 \mathrm { i } }$ is purely imaginary. So we have $\left\{ \begin{array} { l } 4 - b ^ { 2 } = 0 \\ 4 b - 8 \neq 0 \end{array} \right.$, which solves for $b = - 2$. So $z = - 2 \mathrm { i }$.

Question 14: 14. If $a \in R , ( 1 + a i ) i = 3 + i , ( i$ is known to be an imaginary unit), then $a =$

14. If $a \in R , ( 1 + a i ) i = 3 + i , ( i$ is known to be an imaginary unit), then $a =$

  • A. A. - 1
  • B. B. 1
  • C. C. - 3
  • D. D. 3

Answer: C

Solution: $( 1 + a i ) i = i + a i ^ { 2 } = i - a = - a + i = 3 + i$. Using the sufficiently necessary condition for the equality of complex numbers yields $- a = 3 , \therefore a = - 3$.

Question 15: 15. P is known to be a point on the $\triangle A B C$ side BC, $A B = a , A C = b$, and if $S _ { \t...

15. P is known to be a point on the $\triangle A B C$ side BC, $A B = a , A C = b$, and if $S _ { \triangle A B P } = 2 S _ { \triangle A C P }$ then $\stackrel { u d } { A P } =$

  • A. A. $\frac { 1 } { 2 } a + \frac { 3 } { 2 } b$
  • B. B. $\frac { 1 } { 3 } a + \frac { 2 } { 3 } b$
  • C. C. $\frac { 3 } { 2 } \vec { a } + \frac { 1 } { 2 } \vec { b }$
  • D. D. $\frac { 2 } { 3 } \vec { a } + \frac { 1 } { 3 } b$

Answer: B

Solution: Since $P$ is a point on the $\triangle A B C$ side $B C$, $A B = a , A C = b$, and $S _ { \triangle A B P } = 2 S _ { \triangle A C P }$ is a point on the $S _ { \triangle A B P } = \frac { 2 } { 3 } S _ { \triangle A B C }$ side $B P = \frac { 2 } { 3 } B C$, that is, $A P - A B = \frac { 2 } { 3 } ( A C - A B )$, it follows that $S _ { \triangle A B P } = \frac { 2 } { 3 } S _ { \triangle A B C }$, that is $B P = \frac { 2 } { 3 } B C$, that is $A P - A B = \frac { 2 } { 3 } ( A C - A B )$, that is $A P = \frac { 1 } { 3 } A B + \frac { 2 } { 3 } A C = \frac { 1 } { 3 } \vec { a } + \frac { 2 } { 3 } \vec { b }$;

Question 16: 16. In , $A B C$, $A B = A C , D , E$ is the midpoint of $A B , A C$, respectively, then ( ) ![](/im...

16. In , $A B C$, $A B = A C , D , E$ is the midpoint of $A B , A C$, respectively, then ( ) ![](/images/questions/vector-complex/image-002.jpg)

  • A. A. ${ } ^ { A B }$ is common to ${ } ^ { A C }$.
  • B. B. $D E$ is common to ${ } ^ { C B }$.
  • C. C. $C D _ { \text {and } } A E _ { \text {相等 } }$
  • D. D. ${ } ^ { A D }$ is equal to ${ } ^ { B D }$.

Answer: B

Solution: From the question, ${ } ^ { A B }$ and ${ } ^ { A C }$ do not share the same line, A is wrong; Since $D , E$ is the midpoint of $A B , A C$ respectively, $D E / / B C$ , so $D E$ is the same as with $^ { \text {collinear, B is correct;} }$. Since ${ } ^ { C D }$ is not parallel to $A E$, ${ } ^ { C D }$ is not equal to $A E$, C is wrong; Because $A D = D B = - B D$, D is wrong.

Question 17: 17. The complex number $( 3 + \mathrm { i } ) Z = 1 + a \mathrm { i }$ is known to be purely imagina...

17. The complex number $( 3 + \mathrm { i } ) Z = 1 + a \mathrm { i }$ is known to be purely imaginary (where i is the imaginary unit), then the real number $a =$ ()

  • A. A. 3
  • B. B. - 3
  • C. C. $- \frac { 1 } { 3 }$
  • D. D. $\frac { 1 } { 3 }$

Answer: B

Solution: SOLUTION: $\because ( 3 + \mathrm { i } ) Z = 1 + a \mathrm { i }$ $\therefore \quad z = \frac { 1 + a \mathrm { i } } { 3 + \mathrm { i } } = \frac { ( 1 + a \mathrm { i } ) ( 3 - \mathrm { i } ) } { ( 3 + \mathrm { i } ) ( 3 - \mathrm { i } ) } = \frac { 3 + a } { 10 } + \frac { 3 a - 1 } { 10 } \mathrm { i }$ is purely imaginary. $\therefore \left\{ \begin{array} { l } \frac { 3 + a } { 10 } = 0 \\ \frac { 3 a - 1 } { 10 } \neq 0 \end{array} \right.$ and solve for $\quad a = - 3 \quad$.

Question 18: 18. If $z = 4 + 3 i$, then $\frac { \bar { z } } { | z | } =$

18. If $z = 4 + 3 i$, then $\frac { \bar { z } } { | z | } =$

  • A. A. 1
  • B. B. - 1
  • C. C. $\frac { 4 } { 5 } + \frac { 3 } { 5 } i$
  • D. D. $\frac { 4 } { 5 } - \frac { 3 } { 5 } i$

Answer: D

Solution: 试题分析:$\frac { \bar { z } } { | z | } = \frac { 4 - 3 i } { 5 }$ ,故选 D. Complex numbers and their operations.

Question 19: 19. The complex number $Z$ is known to satisfy $Z ( 1 + \mathrm { i } ) = \mathrm { i } ^ { 2023 }$,...

19. The complex number $Z$ is known to satisfy $Z ( 1 + \mathrm { i } ) = \mathrm { i } ^ { 2023 }$, where ${ } ^ { \mathrm { i } }$ is the imaginary unit, then the imaginary part of $Z$ is ( )

  • A. A. $- \frac { 1 } { 2 }$
  • B. B. $\frac { \mathbf { 1 } } { \mathbf { 2 } }$
  • C. C. $- \frac { 1 } { 2 } \mathrm { i }$
  • D. D. $\frac { \sqrt { 2 } } { 2 }$

Answer: A

Solution: Because $\mathrm { i } ^ { 2023 } = \mathrm { i } ^ { 505 \times 4 + 3 } = \left( \mathrm { i } ^ { 4 } \right) ^ { 505 } \times \mathrm { i } ^ { 3 } = - \mathrm { i }$ , . Therefore $z ( 1 + i ) = i ^ { 2023 } = - i$, therefore $z = \frac { - i } { 1 + i } = \frac { - i ( 1 - i ) } { ( 1 - i ) ( 1 + i ) } = \frac { - 1 - i } { 2 } = - \frac { 1 } { 2 } - \frac { i } { 2 }$, the So the imaginary part of ${ } _ { Z }$ is $- \frac { 1 } { 2 }$.

Question 20: 20. It is known that quadrilateral $A B C D$ is a trapezium with $A B _ { \text {和 } } C D$ as its b...

20. It is known that quadrilateral $A B C D$ is a trapezium with $A B _ { \text {和 } } C D$ as its base, $A B = m a + 2 b ( m \in \mathbf { R } )$, $B C = a + 3 b , ~ B D = 4 a + 2 b ~ ( a , ~ b$ are two nonzero and noncommutative vectors in the plane), then $m =$ is a trapezium with $m =$ as its base. FORMULA_4]]

  • A. A. $- \frac { 2 } { 3 }$
  • B. B. $\frac { 2 } { 3 }$
  • C. C. 6
  • D. D. 6

Answer: C

Solution: According to the question, $D C = D B + B C = - 4 a - 2 b + a + 3 b = - 3 a + b$, $A B / / D C$ and $A B / / D C$, so we can get $\frac { m } { 2 } = - 3$ and solve $m = - 6$.

Question 21: 21. In ${ } _ { V A B C }$, ${ } _ { D } , { } _ { E }$ is on the line ${ } _ { A B } , A C$ and $D ...

21. In ${ } _ { V A B C }$, ${ } _ { D } , { } _ { E }$ is on the line ${ } _ { A B } , A C$ and $D B = \frac { 2 } { 3 } A B , A E = \frac { 2 } { 3 } A C$ respectively, and the point ${ } _ { F }$ is the midpoint of the line $B E$. FORMULA_5]] is the midpoint of the line segment $D F =$, then $D F =$

  • A. A. $\frac { 1 } { 6 } A B + \frac { 1 } { 3 } A C$
  • B. B. $\frac { 1 } { 6 } A B - \frac { 1 } { 3 } A C$
  • C. C. $- \frac { \overrightarrow { 1 } } { 6 } A B + \frac { 1 } { 3 } A C$
  • D. D. $- \frac { \overrightarrow { 1 } } { 6 } A B - \frac { 1 } { 3 } A C$

Answer: A

Solution: As shown in the figure, because $A E = \frac { 2 } { 3 } A C , B E = A E - A B = \frac { 2 } { 3 } A C - A B$. Since the point $F$ is the midpoint of the line segment ${ } _ { B E }$, then $B F = \frac { 1 } { 2 } B E = \frac { 1 } { 3 } A C - \frac { 1 } { 2 } A B$ , and Since $D B = \frac { 2 } { 3 } A B$, then $D F = D B + B F = \frac { 1 } { 6 } A B + \frac { 1 } { 3 } A C$ . ![](/images/questions/vector-complex/image-003.jpg) So options B, C and D are wrong and option A is correct.

Question 22: 22. Let $z = 1 - i$ be $\frac { 2 } { z } + z ^ { 2 } =$, and $\frac { 2 } { z } + z ^ { 2 } =$ be $...

22. Let $z = 1 - i$ be $\frac { 2 } { z } + z ^ { 2 } =$, and $\frac { 2 } { z } + z ^ { 2 } =$ be $\frac { 2 } { z } + z ^ { 2 } =$.

  • A. A. $- 1 - \mathrm { i }$
  • B. B. $- \mathrm { l } + \mathrm { i }$
  • C. C. $1 - \mathrm { i }$
  • D. D. $1 + \mathrm { i }$

Answer: C

Solution: Test analysis: Substitute z, according to the algorithm of complex algebraic form, the calculation can be simplified. $\frac { 2 } { z } + z ^ { 2 } = \frac { 2 } { 1 - i } + ( 1 - i ) ^ { 2 } = \frac { 2 ( 1 + i ) } { ( 1 - i ) ( 1 + i ) } + ( - 2 i ) = ( 1 + i ) - 2 i = 1 - i$ Therefore, choose C . ## Points : Complex number operations

Question 23: 23. Let $i$ be an imaginary unit, then the complex number $\left| \frac { 3 + 4 i } { i } \right| =$

23. Let $i$ be an imaginary unit, then the complex number $\left| \frac { 3 + 4 i } { i } \right| =$

  • A. A. 3
  • B. B. 4
  • C. C. 5
  • D. D. 6

Answer: C

Solution: 试题分析:Because $\left| \frac { 3 + 4 i } { i } \right| = \left| \frac { ( 3 + 4 i ) \cdot i } { i \cdot i } \right| = \left| \frac { - 4 + 3 i } { - 1 } \right| = | 4 - 3 i | = \sqrt { 4 ^ { 2 } + ( - 3 ) ^ { 2 } } = 5$, you should choose $C$. Points: 1, the concept of complex numbers; 2, the four operations of complex numbers .

Question 24: 24. As shown in the figure, in $\vee A B C$, $A B = 2 , B C = 3 , \angle A B C = 60 ^ { \circ } , A ...

24. As shown in the figure, in $\vee A B C$, $A B = 2 , B C = 3 , \angle A B C = 60 ^ { \circ } , A D$ is the height on the side of $B C$. $A M = \frac { 2 } { 5 } A D$; if $A M = \lambda A B + \mu B C$, then $\lambda + \mu$ has the value of ![](/images/questions/vector-complex/image-004.jpg)

  • A. A. $\frac { 4 } { 3 }$
  • B. B. $\frac { 8 } { 15 }$
  • C. C. $\frac { 2 } { 3 }$
  • D. D. $\frac { 4 } { 15 }$

Answer: B

Solution: In $\vee A B C$, $A B = 2 , B C = 3 , \angle A B C = 60 ^ { \circ } , A D$ is the height of the $B C$ side of the which yields $B D = A B \cos 60 ^ { \circ } = 1$. By $A M = \frac { 2 } { 5 } A D = \frac { 2 } { 5 } ( A B + B D ) = \frac { 2 } { 5 } \left( A B + \frac { 1 } { 3 } B C \right) = \frac { 2 } { 5 } A B + \frac { 2 } { 15 } B C$ And since $A M = \lambda A B + \mu B C$, $\lambda = \frac { 2 } { 5 } , \mu = \frac { 2 } { 15 }$, so $\lambda + \mu = \frac { 8 } { 15 }$.

Question 25: 25. It is known that ${ } ^ { i }$ and ${ } ^ { j }$ are unit vectors with angles $60 ^ { \circ }$ a...

25. It is known that ${ } ^ { i }$ and ${ } ^ { j }$ are unit vectors with angles $60 ^ { \circ }$ and $a = i - 2 j , b = 2 i$, then the cosine of the angle between ${ } ^ { a }$ and ${ } ^ { b }$ is ${ } ^ { b }$. FORMULA_5]] the cosine of the angle between ${ } ^ { b }$ is

  • A. A. $- \frac { \sqrt { 5 } } { 5 }$
  • B. B. $\frac { \sqrt { 5 } } { 5 }$
  • C. C. 0
  • D. D. $\frac { \sqrt { 3 } } { 3 }$

Answer: C

Solution: $\vec { a } \cdot b = ( i - 2 j ) \cdot ( 2 i ) = 2 i ^ { 2 } - 4 i \cdot j = 2 | i | ^ { 2 } - 4 | i | \cdot | j | \cos 60 ^ { \circ } = 2 - 2 = 0$, so the cosine of the angle between ${ } ^ { a \perp b , ~ } { } ^ { a }$ and $^ { b }$ is zero.

Question 26: 26. Let the vectors $a$ and $b$ satisfy the projection of $| a | = 2 , b$ in the direction of $a$ to...

26. Let the vectors $a$ and $b$ satisfy the projection of $| a | = 2 , b$ in the direction of $a$ to be 1 if there exists a real number $\lambda$ such that $a$ is perpendicular to $a - \lambda b$. INLINE_FORMULA_5]] is perpendicular to $a - \lambda b$, then $\lambda =$

  • A. A. 3
  • B. B. 2
  • C. C. 1
  • D. D. - 1

Answer: B

Solution: 试题分析:由题意得,利用向量投影的意义可得 $\vec { a } \bullet \vec { b } = 2$ ,又因为 INLINE_FORMULA_0]], and because $\vec { a } \bullet ( \vec { a } - \lambda \vec { b } ) = | \vec { a } | ^ { 2 } - \lambda \vec { a } \bullet \vec { b } = 4 - 2 \lambda = 0 \quad$, then $\lambda = 2 \quad$, so choose B. Points : The operation of the product of plane vectors.

Question 27: 27. Let the conjugate complex number $z$ be $\bar { z } , ~ z ( 1 - i ) = 3 - i$, then the correspon...

27. Let the conjugate complex number $z$ be $\bar { z } , ~ z ( 1 - i ) = 3 - i$, then the corresponding point of the complex number $\bar { z }$ in the complex plane is at

  • A. A. first quadrant (of the coordinate plane, where both x and y are positive)
  • B. B. second quadrant (of the coordinate plane, where both x and y are positive)
  • C. C. third quadrant (of the coordinate plane, where both x and y are positive)
  • D. D. fourth quadrant (of the coordinate plane, where both x and y are positive)

Answer: D

Solution: The complex $z = \frac { 3 - \mathrm { i } } { 1 - \mathrm { i } } = \frac { ( 3 - \mathrm { i } ) ( 1 + \mathrm { i } ) } { ( 1 - \mathrm { i } ) ( 1 + \mathrm { i } ) } = 2 + \mathrm { i }$ is known by the question then $\bar { Z } = 2 - \mathrm { i }$ , so the coordinates of the corresponding point of the complex number $\bar { Z }$ in the complex plane is ${ } ^ { ( 2 , - 1 ) }$ , which lies in the fourth quadrant.

Question 28: 28. Euler's formula $e ^ { i x } = \cos x + i \sin x$ ($i$ in imaginary units) was formulated by the...

28. Euler's formula $e ^ { i x } = \cos x + i \sin x$ ($i$ in imaginary units) was formulated by the famous Swiss mathematician Euler, which would refer to The domain of definition of a number function is extended to the set of complex numbers, then the point corresponding to the complex number $e ^ { \frac { i } { { } ^ { i } \frac { \pi } { 4 } } }$ in the complex plane lies at

  • A. A. first quadrant (of the coordinate plane, where both x and y are positive)
  • B. B. second quadrant (of the coordinate plane, where both x and y are positive)
  • C. C. third quadrant (of the coordinate plane, where both x and y are positive)
  • D. D. fourth quadrant (of the coordinate plane, where both x and y are positive)

Answer: A

Solution: $\frac { i } { e ^ { i \frac { \pi } { 4 } } } = \frac { i } { \cos \frac { \pi } { 4 } + i \sin \frac { \pi } { 4 } } = \frac { \sqrt { 2 } i } { 1 + i } = \frac { \sqrt { 2 } i ( 1 - i ) } { 2 } = \frac { \sqrt { 2 } } { 2 } + \frac { \sqrt { 2 } } { 2 } i$ So its corresponding point is $\left( \frac { \sqrt { 2 } } { 2 } , \frac { \sqrt { 2 } } { 2 } \right)$ in the first quadrant

Question 29: 29. It is known that the diagonals of the rectangle $A B C D$ intersect at the point ${ } ^ { O }$, ...

29. It is known that the diagonals of the rectangle $A B C D$ intersect at the point ${ } ^ { O }$, then $A O - B C =$

  • A. A. $A B$
  • B. B. $A C$
  • C. C. $O C$
  • D. D. $O B$

Answer: D

Solution: In the rectangle $A B C D _ { \text {中 } } , B C = A D$, and because $A C \cap B D = O$, then $D O = O B$. Therefore, $\stackrel { \rightarrow } { A O } - B C = A O - A D = D O = O \overrightarrow { B }$ .

Question 30: 30. The vector $a , b$ is known to satisfy $| a | = 1 , | b | = 4$ and $( a + b ) \cdot ( 2 a - b ) ...

30. The vector $a , b$ is known to satisfy $| a | = 1 , | b | = 4$ and $( a + b ) \cdot ( 2 a - b ) = - 12$, then the angle of $a , b$ is

  • A. A. $\frac { \pi } { 6 }$
  • B. B. $\frac { \pi } { 3 }$
  • C. C. $\frac { 2 \pi } { 3 }$
  • D. D. $\frac { 5 \pi } { 6 }$

Answer: B

Solution: By $| a | = 1 , | b | = 4$. Therefore $( \overline { a + b } ) \cdot ( 2 a - b ) = 2 a ^ { 2 } + a \cdot b - b ^ { 2 } = 2 \times 1 ^ { 2 } + a \cdot b - 4 ^ { 2 } = - 12$ Solve for $a \cdot b = 2$ , . Then $\cos < a , b > \frac { a \cdot b } { | a | | b | } = \frac { 2 } { 1 \times 4 } = \frac { 1 } { 2 }$ , . and $\langle a , b \rangle \in [ 0 , \pi ]$ , . So the angle of $a , b$ is $\frac { \pi } { 3 }$.

Question 31: 31. If the complex number $z$ satisfies ${ } ^ { ( 1 - \mathrm { i } ) } z = 2 ( 3 + \mathrm { i } )...

31. If the complex number $z$ satisfies ${ } ^ { ( 1 - \mathrm { i } ) } z = 2 ( 3 + \mathrm { i } )$, then the imaginary part of $z$ is equal to

  • A. A. 4 i
  • B. B. 2 i
  • C. C. 2
  • D. D. 4

Answer: D

Solution: By the question $z = \frac { 2 ( 3 + \mathrm { i } ) } { 1 - \mathrm { i } } = \frac { 2 ( 3 + \mathrm { i } ) ( 1 + \mathrm { i } ) } { ( 1 - \mathrm { i } ) ( 1 + \mathrm { i } ) } = \frac { 2 \left( 3 + 3 \mathrm { i } + \mathrm { i } + \mathrm { i } ^ { 2 } \right) } { 2 } = 2 + 4 \mathrm { i }$, the imaginary part is 4.

Question 32: 32. The complex number $z$ corresponds to the point $( - 2,1 )$ in the complex plane, then $| \bar {...

32. The complex number $z$ corresponds to the point $( - 2,1 )$ in the complex plane, then $| \bar { z } + 3 i | =$

  • A. A. 8
  • B. B. 4
  • C. C. $2 \sqrt { 2 }$
  • D. D. $\sqrt { 2 }$

Answer: C

Solution: The complex number $z$ corresponds to the point $( - 2,1 )$ in the complex plane, then the complex number $z = - 2 + \mathrm { i }$, so $\bar { z } + 3 \mathrm { i } = - 2 + 2 \mathrm { i }$, then $| \bar { z } + 3 i | = | - 2 + 2 i | = \sqrt { ( - 2 ) ^ { 2 } + 2 ^ { 2 } } = 2 \sqrt { 2 }$.

Question 33: 33. It is known that the nonzero vector $a , b$ satisfies $a \perp b$ and the angle between $a + 2 b...

33. It is known that the nonzero vector $a , b$ satisfies $a \perp b$ and the angle between $a + 2 b$ and $a - 2 b$ is $120 ^ { \circ }$. FORMULA_5]]

  • A. A. $\sqrt { 3 }$
  • B. B. $\frac { \sqrt { 3 } } { 2 }$
  • C. C. $\frac { 2 \sqrt { 3 } } { 3 }$
  • D. D. $\frac { \sqrt { 3 } } { 3 }$

Answer: C

Solution: $\because a \perp b$ $\therefore a \cdot b = 0 , ( a + 2 b ) ( a - 2 b ) = a ^ { 2 } - 4 b ^ { 2 }$, $\therefore a \cdot b = 0 , ( a + 2 b ) ( a - 2 b ) = a ^ { 2 } - 4 b ^ { 2 }$ $\because | a + 2 b | = \sqrt { a ^ { 2 } + 4 a \cdot b + 4 b ^ { 2 } } = \sqrt { a ^ { 2 } + 4 b ^ { 2 } } , | a - 2 b | = \sqrt { a ^ { 2 } - 4 a \cdot b + 4 b ^ { 2 } } = \sqrt { a ^ { 2 } + 4 b ^ { 2 } }$, $\therefore a ^ { 2 } - 4 b ^ { 2 } = \sqrt { a ^ { 2 } + 4 b ^ { 2 } } \cdot \sqrt { a ^ { 2 } + 4 b ^ { 2 } } \cdot \cos 120 ^ { \circ }$, and $\therefore \frac { | a | } { | b | } = \frac { 2 \sqrt { 3 } } { 3 }$.

Question 34: 34. It is known that the center of $V A B C$ is the point $O , M$ on the side $B C$ and that the are...

34. It is known that the center of $V A B C$ is the point $O , M$ on the side $B C$ and that the area of $B M = 2 M C , \angle B A C = \frac { \pi } { 3 } , A O \cdot A M = 1$ is equal to the maximum value of the area of $\bigvee A B C$. $B M = 2 M C , \angle B A C = \frac { \pi } { 3 } , A O \cdot A M = 1$, then the maximum value of the area of $\bigvee A B C$ is equal to

  • A. A. $\frac { \sqrt { 3 } } { 2 }$
  • B. B. $\sqrt { 3 }$
  • C. C. $\frac { 3 \sqrt { 6 } } { 8 }$
  • D. D. $\frac { 3 \sqrt { 6 } } { 4 }$

Answer: C

Solution: SOLUTION: Because $B M = 2 M C$, therefore $A M = A B + B M = A B + \frac { 2 } { 3 } B C = A B + \frac { 2 } { 3 } ( A C - A B ) = \frac { 1 } { 3 } A B + \frac { 2 } { 3 } A C$ , the So | $\overrightarrow { 1 } = A O \cdot A M = A O \cdot \left( \frac { 1 } { 3 } A B + \frac { 2 } { 3 } A C \right)$ | | :--- | $= \frac { \overrightarrow { 1 } } { 3 } A O \cdot A B + \frac { 2 } { 3 } A O \cdot A C = \frac { 1 } { 6 } | A B | ^ { 2 } + \frac { 1 } { 3 } | A C | ^ { 2 } \geq \frac { \sqrt { 2 } } { 3 } | A B \| A C |$ So $| A B | | A C | \leq \frac { 3 \sqrt { 2 } } { 2 }$ and take the equal sign if and only if $| A B | = \sqrt { 2 } | A C | = \sqrt { 3 }$; So $S _ { \triangle A B C } = \frac { \overrightarrow { 1 } } { 2 } | A B | \cdot | A C | \sin \angle B A C = \frac { \sqrt { 3 } } { 4 } | A B | | A C | \leq \frac { 3 \sqrt { 6 } } { 8 }$, taking the equal sign if and only if $| A B | = \sqrt { 2 } | A C | = \sqrt { 3 }$;

Question 35: 35. It is known that $a , b \in \mathrm { R }$ and the complex number $z = a + 2 b \mathrm { i }$ (w...

35. It is known that $a , b \in \mathrm { R }$ and the complex number $z = a + 2 b \mathrm { i }$ (where i is an imaginary unit) satisfies $z \cdot \bar { z } = 4$, give the following conclusions: (1) The range of $a ^ { 2 } + b ^ { 2 }$ is $[ 1,4 ]$. The range of values of $a ^ { 2 } + b ^ { 2 }$ is $[ 1,4 ]$; (2) the range of values of $\sqrt { ( a - \sqrt { 3 } ) ^ { 2 } + b ^ { 2 } } + \sqrt { ( a + \sqrt { 3 } ) ^ { 2 } + b ^ { 2 } } = 4$; (3) the range of values of $\frac { b - \sqrt { 5 } } { a }$ is $( - \infty , - 1 ] \cup [ 1 , + \infty )$; (4) The minimum value of $\frac { 1 } { a ^ { 2 } } + \frac { 1 } { b ^ { 2 } }$ is 2; the number of correct conclusions is ( )

  • A. A. 1
  • B. B. 2
  • C. C. 3
  • D. D. 4

Answer: C

Solution: From ${ } ^ { Z \cdot \bar { z } } = 4 \Rightarrow ( a + 2 b \mathrm { i } ) ( a - 2 b \mathrm { i } ) = a ^ { 2 } + 4 b ^ { 2 } = \left. z \right| ^ { 2 } = 4 \Rightarrow \frac { a ^ { 2 } } { 4 } + b ^ { 2 } = 1$, the point $( a , b ) _ { \text {的轨迹 } }$ is an ellipse with $( - \sqrt { 3 } , 0 ) , ( \sqrt { 3 } , 0 )$ as the focus, $a ^ { \prime } = 2$ as the length of the long semiaxis, $b ^ { \prime } = 1$ as the length of the short semiaxis, and $c ^ { \prime } = \sqrt { 3 }$ as the semifocal distance. From the definition of ellipse, (2) is correct; $a ^ { 2 } + b ^ { 2 }$ denotes the square of the distance from the point on the ellipse to the origin, it is easy to know that the distance from the endpoints on the short axis of the ellipse to the origin is the smallest, and the distance from the endpoints on the long axis to the origin is the largest, which are 1 and 2 respectively, so the range of values of $a ^ { 2 } + b ^ { 2 }$ is ${ } ^ { [ 1,4 ] }$, (1) Correct; $\frac { b - \sqrt { 5 } } { a }$ represents the slope of the line connecting the point $( a , b )$ and the point $( 0 , \sqrt { 5 } )$ on the ellipse, set the straight line $l : b = k a + \sqrt { 5 }$ is tangent to the ellipse, and the equations of the straight line and the ellipse and simplify the equation to: $( 0 , \sqrt { 5 } )$. INLINE_FORMULA_13]], $\left( \frac { 1 } { 4 } + k ^ { 2 } \right) a ^ { 2 } + 2 \sqrt { 5 } k a + 4 = 0$ $\Delta = 20 k ^ { 2 } - 4 \left( 1 + 4 k ^ { 2 } \right) = 0 \Rightarrow k = \pm 1$ , according to the positional relationship between the point and the ellipse can be known, $\frac { b - \sqrt { 5 } } { a }$ of the range of values is $( - \infty , - 1 ] \cup [ 1 , + \infty )$ , (3) is correct ; According to the meaning of the question, $\frac { 1 } { a ^ { 2 } } + \frac { 1 } { b ^ { 2 } } = \frac { \frac { a ^ { 2 } } { 4 } + b ^ { 2 } } { a ^ { 2 } } + \frac { \frac { a ^ { 2 } } { 4 } + b ^ { 2 } } { b ^ { 2 } } = \frac { b ^ { 2 } } { a ^ { 2 } } + \frac { a ^ { 2 } } { 4 b ^ { 2 } } + \frac { 5 } { 4 } \geq 2 \sqrt { \frac { b ^ { 2 } } { a ^ { 2 } } \times \frac { a ^ { 2 } } { 4 b ^ { 2 } } } + \frac { 5 } { 4 } = \frac { 9 } { 4 }$, when and only when $\frac { b ^ { 2 } } { a ^ { 2 } } = \frac { a ^ { 2 } } { 4 b ^ { 2 } } \Rightarrow a ^ { 2 } = 2 b ^ { 2 } = \frac { 4 } { 3 }$ take "$=$", (4) is wrong.

Question 36: 36. The conjugate complex $Z = \frac { 2 } { 1 + \mathrm { i } }$ of the complex ${ } _ { \bar { Z }...

36. The conjugate complex $Z = \frac { 2 } { 1 + \mathrm { i } }$ of the complex ${ } _ { \bar { Z } }$ is

  • A. A. $2 + 2 i$
  • B. B. $2 - 2 \mathrm { i }$
  • C. C. $1 + \mathrm { i }$
  • D. D. 1- i

Answer: C

Solution: Because $z = \frac { 2 } { 1 + \mathrm { i } } = \frac { 2 ( 1 - \mathrm { i } ) } { ( 1 + \mathrm { i } ) ( 1 - \mathrm { i } ) } = \frac { 2 ( 1 - \mathrm { i } ) } { 2 } = 1 - \mathrm { i }$. Therefore $\bar { z } = 1 + \mathrm { i }$ , .

Question 37: 37. It is known that the vector $a = ( 3 \cos 2 \alpha , \sin \alpha ) , b = ( 2 , \cos \alpha + 5 \...

37. It is known that the vector $a = ( 3 \cos 2 \alpha , \sin \alpha ) , b = ( 2 , \cos \alpha + 5 \sin \alpha ) , \alpha \in \left( 0 , \frac { \pi } { 2 } \right)$ , if $a \perp b$ , then $\tan \alpha =$

  • A. A. 2
  • B. B. - 2
  • C. C. 3
  • D. D. $\frac { 3 } { 4 }$

Answer: C

Solution: From the question $a \perp b$ we can get $a \cdot b = 0$. i.e., $6 \cos 2 \alpha + \sin \alpha ( \cos \alpha + 5 \sin \alpha ) = 0$. i.e., $6 \left( \cos ^ { 2 } \alpha - \sin ^ { 2 } \alpha \right) + \sin \alpha \cos \alpha + 5 \sin ^ { 2 } \alpha = 0$ Therefore, $\frac { 6 \cos ^ { 2 } \alpha - \sin ^ { 2 } \alpha + \sin \alpha \cos \alpha } { \sin ^ { 2 } \alpha + \cos ^ { 2 } \alpha } = 0$, i.e. $\frac { 6 - \tan ^ { 2 } \alpha + \tan \alpha } { \tan ^ { 2 } \alpha + 1 } = 0$, is $\frac { 6 - \tan ^ { 2 } \alpha + \tan \alpha } { \tan ^ { 2 } \alpha + 1 } = 0$. Since $\alpha \in \left( 0 , \frac { \pi } { 2 } \right)$, therefore $\tan \alpha = 3 , \tan \alpha = - 2$ (rounded), the

Question 38: 38. If $\left( \begin{array} { l l } a & b \\ c & d \end{array} \right)$ is known to be a unit matri...

38. If $\left( \begin{array} { l l } a & b \\ c & d \end{array} \right)$ is known to be a unit matrix, then the vector $m = ( a , b )$ has the modulus

  • A. A. 0
  • B. B. 1
  • C. C. 2
  • D. D. $\sqrt { 2 }$

Answer: B

Solution: According to the definition of unit matrix, a matrix of order $n$ whose elements on the main diagonal are all 1's and the rest of the elements are all 0's is called a unit matrix of order $n$. It is known that $a = d = 1 , b = c = 0$, then $\stackrel { \text { I } } { m } = ( a , b ) = ( 1,0 )$ So $\left| { } ^ { \mathrm { r } } \right| = | ( 1,0 ) | = 1$

Question 39: 39. In the rhombus $A B C D$, if $| A B + A D | = 3$, then $A C \cdot A B =$

39. In the rhombus $A B C D$, if $| A B + A D | = 3$, then $A C \cdot A B =$

  • A. A. $\frac { 9 } { 2 }$
  • B. B. $\frac { 3 } { 2 }$
  • C. C. 3
  • D. D. 9

Answer: A

Solution: ![](/images/questions/vector-complex/image-005.jpg) Connecting $A C , B D$ intersects the point $O$ , then $B D \perp A C$ , which is easy to get $A B + A D = A C$ , then $| A C | = 3$ , and $B A \cdot \cos \angle B A C = A O = \frac { 1 } { 2 } A C$, then $| A C | = 3$, and Then $A C \cdot A B = | A C | \cdot | A B | \cos \angle B A C = \frac { 1 } { 2 } | A C | ^ { 2 } = \frac { 9 } { 2 }$.

Question 40: O is known to be the origin, the coordinates of point M are $( 2 , - 1 )$, the coordinates of point ...

O is known to be the origin, the coordinates of point M are $( 2 , - 1 )$, the coordinates of point N satisfy $\left\{ \begin{array} { l } x + y \geq 1 \\ y - x \leq 1 \\ x \leq 1 \end{array} \right.$, then the maximum value of $O M \cdot O N$ is (). High School Mathematics Assignment, October 29, 2025

  • A. A. 2
  • B. B. 1
  • C. C. 0
  • D. D. - 1

Answer: A

Solution: According to the question, $O M \cdot O N = 2 x - y$ , make $Z = 2 x - y$ Make the region of the plane represented by the set of inequalities as shown shaded in $\triangle A B C$: ![](/images/questions/vector-complex/image-006.jpg) Make the line $l _ { 0 } : 2 x - y = 0$, and then translate the line $l _ { 0 }$ in the feasible domain The line $Z$ is maximal at point $A$, and $Z$ is maximal at point $A$. and $A ( 1,0 )$ is obtained from $\left\{ \begin{array} { l } x + y = 1 \\ x = 1 \end{array} \right.$. In this case $Z$ maxes $= 2$.
Back to Topics

Vector and Complex Number

向量与复数

40 Practice Questions

Practice with Chinese questions to prepare for the CSCA exam. You can toggle translations while practicing.

Topic Overview

Vectors and complex numbers are important foundation modules for the CSCA math exam. The Vectors section focuses on coordinate operations, perpendicular/parallel relationships, and modulus calculations for plane vectors, while the Complex Numbers section covers algebraic forms, quadratic operations, conjugate complexes, and solving for moduli. Topics often combine geometric intuition with algebraic calculations and require flexible use of formulas.

Questions:40

Key Points

  • 1Coordinate operations of plane vectors and judgment of linear relations
  • 2Parameterization using coordinate conditions of perpendicular or parallel vectors
  • 3Algebraic operations on complex numbers and solving conjugate complex numbers
  • 4Computation of complex modes and equation solving
  • 5Integration of vectors and complex numbers in geometric problems

Study Tips

It is recommended to systematically sort out vector formulas through the coordinate method, as well as to understand complex operations by analogy with real numbers, and to practice more topics combining algebra and geometry.

Practicing topics ≠ Passing the exam

Full mock exam based on official syllabus, with mixed topics like the real test

Get Mock Exams →

No credit card? Email us: kaiguo370@gmail.com