39. Let the set $M = \left\{ x \mid x ^ { 2 } \leq 4 \right\} , N = \left\{ x \mid \log _ { 2 } x \leq 1 \right\}$ be $M \cap N =$, then $M \cap N =$
- A. A. $[ - 2,2 ]$
- B. B. $\{ 2 \}$
- C. C. $( 0,2 ]$
- D. D. $( - \infty , 2 ]$
Answer: C
Solution: Test analysis: Solve the inequality $x ^ { 2 } \leq 4$ to get $- 2 \leq x \leq 2$, i.e. the set
$\mathrm { A } = \{ x \mid - 2 \leq x \leq 2 \}$, solve the inequality $\log x \leq 1$ to get $0 < x \leq 2$, which is the set $\mathrm { B } =$
$\{ x \mid 0 < x \leq 2 \}$ , which is the set $A \cap B = \{ x \mid 0 < x \leq 2 \} = ( 0,2 ]$ according to the operation of sets, so the choice of this question is
C.
Point: The operations of sets.
$40 . \mathrm { C }$
[Knowledge Points] Solve quadratic inequalities without parameters, the concept and operations of intersection, the concept and operations of complementary sets, and solve inequalities by the monotonicity of logarithmic functions.
[Analysis] Solve the inequality to simplify the set, and then use the complementary set, the intersection of the definition of the solution that is obtained.
[Detailed Solution] Solve the inequality $| x - 2 | > 1$, get $x < 1$ or $x > 3$, that is, $A = ( - \infty , 1 ) \cup ( 3 , + \infty ) , ~ \Phi _ { \mathrm { k } } A = [ 1,3 ]$, and $A = ( - \infty , 1 ) \cup ( 3 , + \infty ) , ~ \Phi _ { \mathrm { k } } A = [ 1,3 ]$, and $A = ( - \infty , 1 ) \cup ( 3 , + \infty ) , ~ \Phi _ { \mathrm { k } } A = [ 1,3 ]$.
Solve the inequality ${ } ^ { \log _ { 2 } x < 1 }$ to get $0 < x < 2$, then $B = ( 0,2 )$, and $B = ( 0,2 )$ to get $B = ( 0,2 )$.
So $\left( { \underset { \mathbf { q } } { \mathbf { q } } } _ { \mathbf { R } } A \right) \cap B = [ 1,2 )$.