Skip to main content

Inequality - Practice Questions (38)

Question 1: 1. Knowing that the image of the quadratic function $y = a x ^ { 2 } + b x + c$ is shown in the figu...

1. Knowing that the image of the quadratic function $y = a x ^ { 2 } + b x + c$ is shown in the figure, the solution set of the inequality $a x ^ { 2 } + b x + c > 0$ is ( ) ![](/images/questions/inequality/image-001.jpg)

  • A. A. $( - 2,1 )$
  • B. B. $( - \infty , - 2 ) \cup ( 1 , + \infty )$
  • C. C. $[ - 2,1 ]$
  • D. D. $( - \infty , - 2 ] \cup [ 1 , + \infty )$

Answer: A

Solution: Combining the images it is easy to see that The solution set ${ } ^ { ( - 2,1 ) }$ of the inequality $a x ^ { 2 } + b x + c > 0$ , the

Question 2: 2. "$x ( x - 2 ) < 0$" is a condition of "$| x - 1 | < 2$".

2. "$x ( x - 2 ) < 0$" is a condition of "$| x - 1 | < 2$".

  • A. A. impermissible
  • B. B. sufficiently unnecessary
  • C. C. substitute
  • D. D. Neither sufficient nor necessary

Answer: B

Solution: From $x ( x - 2 ) < 0$ , we get $0 < x < 2$ . $| x - 1 | < 2$, get $- 1 < x < 3$, $\because ( 0,2 ) \square ^ { ( - 1,3 ) }$, $\therefore$ $\therefore$ "$x ( x - 2 ) < 0$" is a sufficient and unnecessary condition for " $| x - 1 | < 2$".

Question 3: 3. If the set $A = \left\{ x \mid y = \log _ { 2 } ( x - 1 ) \right\} , B = \left\{ x \mid x ^ { 2 }...

3. If the set $A = \left\{ x \mid y = \log _ { 2 } ( x - 1 ) \right\} , B = \left\{ x \mid x ^ { 2 } - x - 6 \leq 0 \right\}$ , then $\left( \partial _ { R } A \right) \cap B = ( )$

  • A. A. $( - 2,1 ]$
  • B. B. $[ 1,3 ]$
  • C. C. $[ - 2,1 )$
  • D. D. $[ - 2,1 ]$

Answer: D

Solution: From the definition field of $^ { y = \log _ { 2 } ( x - 1 ) }$, we have : $x > 1$. Therefore $A = \{ x \mid x > 1 \} , ~ \Phi _ { k } A = \{ x \mid x \leq 1 \}$ , and From $x ^ { 2 } - x - 6 \leq 0$, we have: $- 2 \leq x \leq 3$, and so $B = \{ x \mid - 2 \leq x \leq 3 \}$ , . so $\left( \tilde { 0 } _ { R } A \right) \mid B = [ - 2,1 ]$ , and

Question 4: 4. If $a > b > 0 , c > d$ is known, then the following conclusion is true

4. If $a > b > 0 , c > d$ is known, then the following conclusion is true

  • A. A. $a c > b d$
  • B. B. $a + c > b + d$
  • C. C. $a c > b c$
  • D. D. $a - c > b - d$

Answer: B

Solution: $\because a > b , c > d , \therefore a + c > b + d$.

Question 5: 5. If $a < b$, then the following inequality must hold ( )

5. If $a < b$, then the following inequality must hold ( )

  • A. A. $| a | < | b |$
  • B. B. $\frac { 1 } { a } < \frac { 1 } { b }$
  • C. C. $a < 2 b$
  • D. D. $2 a < 2 b$

Answer: D

Solution: Option A, when $a = - 1 , b = 0$, satisfies $a < b$ but not $| a | < | b | , \mathrm { A }$ Error; B option, when $a = - 2 , b = - 1$, satisfies $a < b$ but not $\frac { 1 } { a } < \frac { 1 } { b }$, B is wrong; C option, when ${ } ^ { a = - 2 , b = - 1 }$, satisfies $^ { a < b }$, but at this time ${ } ^ { a = 2 b }$, C error; D option, because $a < b$, by the nature of inequality can be obtained $2 a < 2 b$, D is correct.

Question 6: 6. It is known that the set $A = \{ x \mid x = 3 k - 1 , k \in \mathbf { N } \}$, the set $B = \left...

6. It is known that the set $A = \{ x \mid x = 3 k - 1 , k \in \mathbf { N } \}$, the set $B = \left\{ x \mid - x ^ { 2 } + 2 x + 24 \geq 0 \right\}$, then $A \cap B =$ ()

  • A. A. $\{ - 4 , - 1,2,5 \}$
  • B. B. $\{ - 1,2,5 \}$
  • C. C. $\{ 2,5 \}$
  • D. D. $\{ - 4 , - 1,2 \}$

Answer: B

Solution: By $A = \{ x \mid x = 3 k - 1 , k \in \mathbf { N } \} , B = \left\{ x \mid - x ^ { 2 } + 2 x + 24 \geq 0 \right\} = \{ x \mid - 4 \leq x \leq 6 \}$. Therefore $A \cap B = \{ - 1,2,5 \}$

Question 7: 8. It is known that the set $A = \left\{ * x ^ { 2 } - 2 x - 3 < 0 \right\} , B = \left\{ * x ^ { 2 ...

8. It is known that the set $A = \left\{ * x ^ { 2 } - 2 x - 3 < 0 \right\} , B = \left\{ * x ^ { 2 } - 4 x < 0 , x \in \mathbf { Z } \right\}$, then $A \cap B =$

  • A. A. $\{ 2,3,4 \}$
  • B. B. $\{ 1,2 \}$
  • C. C. $\{ 0,1,2 \}$
  • D. D. $\{ 1,2,3 \}$

Answer: B

Solution: $A = \left\{ * x ^ { 2 } - 2 x - 3 < 0 \right\} = \{ * - 1 < x < 3 \} , B = \left\{ * x ^ { 2 } - 4 x < 0 , x \in \mathbf { Z } \right\} = \{ 1,2,3 \}$, so $A \cap B = \{ 1,2 \}$.

Question 8: 9. It is known that the set $M = \{ - 5 , - 2,0,3 \} , N = \left\{ x \mid x ^ { 2 } + 2 x - 8 < 0 \r...

9. It is known that the set $M = \{ - 5 , - 2,0,3 \} , N = \left\{ x \mid x ^ { 2 } + 2 x - 8 < 0 \right\}$, then $M \cap N =$

  • A. A. $\{ - 5 , - 2 \}$
  • B. B. $\{ - 2,0 \}$
  • C. C. $\{ 0,3 \}$
  • D. D. $\{ - 2,3 \}$

Answer: B

Solution: $\because N = \{ x \mid ( x + 4 ) ( x - 2 ) < 0 \} = \{ x \mid - 4 < x < 2 \} , \therefore M \cap N = \{ - 2,0 \}$.

Question 9: 10. It is known that the set $A = \left\{ x \mid x ^ { 2 } - 4 < 0 \right\} , B = \{ x \mid x + 1 > ...

10. It is known that the set $A = \left\{ x \mid x ^ { 2 } - 4 < 0 \right\} , B = \{ x \mid x + 1 > 0 \}$, then $A \cup B =$

  • A. A. $( - 2 , + \infty )$
  • B. B. $( - 1,2 )$
  • C. C. $( - 2,2 )$
  • D. D. ( $- 2 , - 1$ )

Answer: A

Solution:

Question 10: 11. If the set $A = \left\{ x \in N \quad x ^ { 2 } - 2 x - 3 \leq 0 \right\}$ is known, then the nu...

11. If the set $A = \left\{ x \in N \quad x ^ { 2 } - 2 x - 3 \leq 0 \right\}$ is known, then the number of true subsets of the set $A$ is

  • A. A. 32
  • B. B. 31
  • C. C. 16
  • D. D. 15

Answer: D

Solution: SOLUTION : From the question, we have $A = \left\{ x \in N \quad x ^ { 2 } - 2 x - 3 \leq 0 \right\} = \{ x \in N - 1 \leq x \leq 3 \} = \{ 0,1,2,3 \}$, whose true subsets are $2 ^ { 4 } - 1 = 15$.

Question 11: 12. It is known that the set $A = \left\{ x \mid x ^ { 2 } - x - 6 < 0 \right\} , B = \{ x \mid x > ...

12. It is known that the set $A = \left\{ x \mid x ^ { 2 } - x - 6 < 0 \right\} , B = \{ x \mid x > 0 \}$, then $A \cap B =$

  • A. A. $\{ x \mid - 2 < x < 3 \}$
  • B. B. $\{ x \mid 0 < x < 3 \}$
  • C. C. $\{ x \mid - 3 < x < 2 \}$
  • D. D. $\{ x \mid 0 < x < 2 \}$

Answer: B

Solution: Because $A = \left\{ x \mid x ^ { 2 } - x - 6 < 0 \right\} = \{ x \mid - 2 < x < 3 \} , B = \{ x \mid x > 0 \}$, therefore $A \cap B = \{ x \mid 0 < x < 3 \}$.

Question 12: 13. The solution set of the following inequality is $R$.

13. The solution set of the following inequality is $R$.

  • A. A. $x ^ { 2 } + 4 x + 4 > 0$
  • B. B. $\sqrt { x ^ { 2 } } > 0$
  • C. C. $\left( \frac { 1 } { 2 } \right) ^ { x } + 1 > 0$
  • D. D. $- x ^ { 2 } + 2 x - 1 > 0$

Answer: C

Solution: From $x ^ { 2 } + 4 x + 4 = ( x + 2 ) ^ { 2 } > 0$, the solution set is $\{ x \mid x \neq - 2 \}$, so A is incorrect; By $\sqrt { x ^ { 2 } } = x \mid > 0$, the solution set is $\{ x \mid x \neq 0 \}$, so B is incorrect; By $\left( \frac { 1 } { 2 } \right) ^ { x } > 0$, $\left( \frac { 1 } { 2 } \right) ^ { x } + 1 > 1 > 0$ holds on $x \in \mathrm { R }$, so C is correct; By $- x ^ { 2 } + 2 x - 1 = - ( x - 1 ) ^ { 2 } > 0$, there is no solution, so D is incorrect.

Question 13: 14. The graph of the function $f ( x )$ is shown in the figure, let the derivative function of $f ( ...

14. The graph of the function $f ( x )$ is shown in the figure, let the derivative function of $f ( x )$ be $f ^ { \prime } ( x )$, then the solution set of $\frac { f ^ { \prime } ( x ) } { f ( x ) } > 0$ is ![](/images/questions/inequality/image-002.jpg)

  • A. A. $( 1,6 )$
  • B. B. $( 1,4 )$
  • C. C. $( - \infty , 1 )$
  • D. D. $( 1,4 ) \cup ( 6 , + \infty )$

Answer: D

Solution: From $\frac { f ^ { \prime } ( x ) } { f ( x ) } > 0$ we get $f ^ { \prime } ( x ) , f ( x )$ with the same sign. From the figure, $x \in ( - \infty , 4 )$ monotonically increases when $f ( x )$ is $f ^ { \prime } ( x ) > 0$; $f ( x )$ monotonically decreases when $x \in ( 4 , + \infty )$ is $f ^ { \prime } ( x ) < 0$; $f ^ { \prime } ( x ) < 0$ monotonically decreases when $f ^ { \prime } ( x ) > 0 , f ( x ) > 0 , \frac { f ^ { \prime } ( x ) } { f ( x ) } > 0$ is $\frac { f ^ { \prime } ( x ) } { f ( x ) } > 0$; $\frac { f ^ { \prime } ( x ) } { f ( x ) } > 0$ is $\frac { f ^ { \prime } ( x ) } { f ( x ) } > 0$. $f ^ { \prime } ( x ) < 0$ Therefore, when $x \in ( 1,4 )$, $f ^ { \prime } ( x ) > 0 , f ( x ) > 0 , \frac { f ^ { \prime } ( x ) } { f ( x ) } > 0$; When $x \in ( 6 , + \infty )$ is $f ^ { \prime } ( x ) < 0 , f ( x ) < 0 , \frac { f ^ { \prime } ( x ) } { f ( x ) } > 0$, $x \in ( 6 , + \infty )$ is $f ^ { \prime } ( x ) < 0 , f ( x ) < 0 , \frac { f ^ { \prime } ( x ) } { f ( x ) } > 0$. In summary, the solution set of $\frac { f ^ { \prime } ( x ) } { f ( x ) } > 0$ is $( 1,4 ) \cup ( 6 , + \infty )$.

Question 14: 15. It is known that ${ } _ { a } , b , c \in \mathbf { R }$ and $a \neq 0$, then the solution set o...

15. It is known that ${ } _ { a } , b , c \in \mathbf { R }$ and $a \neq 0$, then the solution set of the inequality $\log _ { \frac { 1 } { 2 } } \left( a x ^ { 2 } + b x + c \right) > 0$ with respect to ${ } _ { x }$ cannot be ( ).

  • A. A. R
  • B. B. $( - 2 , - 1 ) \cup ( 2,3 )$
  • C. C. $( - 2 , - 1 )$
  • D. D. $\theta$

Answer: A

Solution: $a , b , c \in \mathbf { R }$ and $a \neq 0$, the inequality $\log _ { \frac { 1 } { 2 } } \left( a x ^ { 2 } + b x + c \right) > 0 \Leftrightarrow 0 < a x ^ { 2 } + b x + c < 1$ (1) about $x$, when $a = 1 , b = c = 3$, the solution set of inequality (1) is $a = 1 , b = c = 3$. INLINE_FORMULA_5]], eliminating C; When $a = \frac { 1 } { 4 } , ~ b = - \frac { 1 } { 4 } , ~ c = - \frac { 1 } { 2 }$, the solution set of inequality (1) is $( - 2 , - 1 ) \cup ( 2,3 )$ , excluding B ; When $a = - 1 , ~ b = 3 , ~ c = - 3$, $a x ^ { 2 } + b x + c < 0$ is constant, and the solution set of inequality (1) is $\oslash$, exclude D.

Question 15: 16. It is known that the set $A = \left\{ x \mid x ^ { 2 } - 2 x - 3 \leq 0 \right\} , B = \{ x \mid...

16. It is known that the set $A = \left\{ x \mid x ^ { 2 } - 2 x - 3 \leq 0 \right\} , B = \{ x \mid 0 < x \leq 4 \}$, then $A \cup B = ( )$

  • A. A. $[ - 1,4 ]$
  • B. B. $( 0,3 ]$
  • C. C. $( - 1,0 ] \cup ( 1,4 ]$
  • D. D. $( - 1,0 ) \cup ( 1,4 ]$

Answer: A

Solution: SOLUTION: From $x ^ { 2 } - 2 x - 3 \leq 0$, we have $( x + 1 ) ( x - 3 ) \leq 0 , - 1 \leq x \leq 3$, so $A = \{ x \mid - 1 \leq x \leq 3 \}$, because $B = \{ x \mid 0 < x \leq 4 \}$, so $A \cup B = \{ x \mid - 1 \leq x \leq 4 \}$.

Question 16: 17. As shown in the figure, it is known that $R$ is the set of real numbers and the set $A = \{ x \m...

17. As shown in the figure, it is known that $R$ is the set of real numbers and the set $A = \{ x \mid 1 < x < 2 \} , ~ B = \left\{ x \left\lvert \, \frac { 2 x - 3 } { x } < 0 \right. \right\}$ , then the shaded part represents the set ( ) ![](/images/questions/inequality/image-003.jpg)

  • A. A. $[ 0,1 ]$
  • B. B. $( 0,1 ]$
  • C. C. $( 0,1 )$
  • D. D. $[ 0,1 )$

Answer: B

Solution: From $\frac { 2 x - 3 } { x } < 0$, solve for $0 < x < \frac { 3 } { 2 }$, which is $B = \left\{ x \left\lvert \, 0 < x < \frac { 3 } { 2 } \right. \right\}$. Venn The shaded portion of the diagram represents $\left( \mathrm { x } _ { \mathrm { R } } A \right) \cap B = \{ x \mid 0 < x \leq 1 \}$.

Question 17: 18. The solution set of the inequality $x$ with respect to $a x - b > 0$ is $\{ x \mid x > 1 \}$, an...

18. The solution set of the inequality $x$ with respect to $a x - b > 0$ is $\{ x \mid x > 1 \}$, and the solution set of the inequality $x$ with respect to $( a x - b ) ( x - 3 ) < 0$ is ( ).

  • A. A. $\left\{ x \mid x < - 1 _ { \text {或 } } x > 3 \right\}$
  • B. B. $\{ x \mid - 1 < x < 3 \}$
  • C. C. $\{ x \mid 1 < x < 3 \}$
  • D. D. $\left\{ x \mid x < 1 \right.$ or $\left. ^ { x > 3 } \right\}$

Answer: B

Solution: Since the solution set of the inequality $a x - b > 0$ is $\{ x \mid x > 1 \}$, ${ } _ { a > 0 } , ~ \frac { b } { a } = 1$, the inequality $( a x + b ) ( x - 3 ) < 0$ with respect to $x$ is transformed into $a x - b > 0$, which is $( x + 1 ) ( x - 3 ) < 0$, and solves $- 1 < x < 3$, so the solution set of inequality $( a x - b ) ( x - 3 ) < 0$ is $\{ x \mid - 1 < x < 3 \}$.

Question 18: 19. It is known that the set $A = \left\{ x \mid \log _ { 2 } x < 1 \right\} , B = \left\{ x \mid x ...

19. It is known that the set $A = \left\{ x \mid \log _ { 2 } x < 1 \right\} , B = \left\{ x \mid x ^ { 2 } \geq x \right\}$, then $A \cap B =$

  • A. A. $( 0,2 )$
  • B. B. $( 1,2 )$
  • C. C. $[ 1,2 )$
  • D. D. $[ 1 , + \infty )$

Answer: C

Solution: Because $A = \left\{ x \mid \log _ { 2 } x < 1 \right\} = ( 0,2 ) , B = \left\{ x \mid x ^ { 2 } \geq x \right\} = ( - \infty , 0 ] \cup [ 1 , + \infty )$, therefore, $A \cap B = [ 1,2 )$.

Question 19: 20. If $0 < a < b , m > 0$, then the following inequality is correct

20. If $0 < a < b , m > 0$, then the following inequality is correct

  • A. A. $\frac { a } { b } < \frac { a + m } { b + m }$
  • B. B. $\frac { a } { b } < \frac { a - m } { b - m }$
  • C. C. $\frac { a } { b } > \frac { a + m } { b + m }$
  • D. D. $\frac { a } { b } > \frac { a - m } { b - m }$

Answer: A

Solution: For AC, from $0 < a < b , m > 0$, we get $\frac { a } { b } - \frac { a + m } { b + m } = \frac { a ( b + m ) - b ( a + m ) } { b ( b + m ) } = \frac { ( a - b ) m } { b ( b + m ) } < 0$, so $\frac { a } { b } < \frac { a + m } { b + m }$, A is correct, C is wrong; For B, when ${ } _ { b = m }$, it is meaningless; if ${ } _ { b \neq m }$, take ${ } _ { a = m }$, then $\frac { a } { b } > 0 = \frac { a - m } { b - m } , ~ \mathrm {~B}$ is wrong; For D, when $b = m$, it is meaningless; if $b \neq m$, take $a = 1 , b = 2 , m = 3$, then $\frac { a } { b } = \frac { 1 } { 2 } < 2 = \frac { a - m } { b - m }$, D is wrong. So choose A

Question 20: 21. If "$\exists x \in R , x ^ { 2 } + a x + a \leq 0$" is a true proposition, then the range of val...

21. If "$\exists x \in R , x ^ { 2 } + a x + a \leq 0$" is a true proposition, then the range of values of the real number $a$ is

  • A. A. $\left[ \begin{array} { l l } 0 & 4 \end{array} \right]$
  • B. B. $( - \infty , 0 ] \cup [ 4 , + \infty )$
  • C. C. $( - 40 )$
  • D. D. $( - \infty , 0 ) \cup ( 4 , + \infty )$

Answer: B

Solution: "$\exists x \in R , x ^ { 2 } + a x + a \leq 0$" is a true proposition, then It is sufficient that the corresponding quadratic function and the $x$ axis have an intersection, $\Delta = a ^ { 2 } - 4 a \geq 0$ $\Delta = a ^ { 2 } - 4 a \geq 0$, and solve for $a \leq 0$ or $a \geq 4$, and

Question 21: 22. Let the set $A = \left\{ x \left\lvert \, \frac { x + 1 } { x - 1 } \leq 0 \right. \right\} , B ...

22. Let the set $A = \left\{ x \left\lvert \, \frac { x + 1 } { x - 1 } \leq 0 \right. \right\} , B = \left\{ y \mid y = 2 ^ { x } , x \in A \right\}$ be $A \cap B =$, then $A \cap B =$

  • A. A. $( 0,1 )$
  • B. B. ( $- 1,2$ )
  • C. C. $( 1 , + \infty )$
  • D. D. $\left[ \frac { 1 } { 2 } , 1 \right)$

Answer: D

Solution: $\because$ set $A = \left\{ x \left\lvert \, \frac { x + 1 } { x - 1 } \leq 0 \right. \right\} , \therefore$ set $A = \{ x \mid - 1 \leq x < 1 \}$. $\therefore B = \left\{ y \mid y = 2 ^ { x } , x \in A \right\} = \left\{ y \left\lvert \, \frac { 1 } { 2 } \leq y < 2 \right. \right\} , \therefore A \cap B = \left[ \frac { 1 } { 2 } , 1 \right)$.

Question 22: 23. It is known that the set $A = ( 2,5 ] , B = \left\{ x \mid x ^ { 2 } - 11 x + 10 < 0 \right\}$, ...

23. It is known that the set $A = ( 2,5 ] , B = \left\{ x \mid x ^ { 2 } - 11 x + 10 < 0 \right\}$, then $\left( \AA _ { \mathrm { R } } A \right) \mid B =$

  • A. A. $[ 5,10 )$
  • B. B. $( 1,2 ] \cup ( 5,10 )$
  • C. C. $( - \infty , 2 ] \cup ( 5 , + \infty )$
  • D. D. $( 1,2 ) \cup ( 5,10 )$

Answer: B

Solution: Because $B = \left\{ x \mid x ^ { 2 } - 11 x + 10 < 0 \right\} = ( 1,10 ) , \overrightarrow { \mathrm { c } } _ { \mathrm { k } } A = ( - \infty , 2 ] \cup ( 5 , + \infty )$. Therefore, $\left( { \underset { \mathbf { q } } { \mathbf { q } } } _ { \mathbf { k } } A \right) \cap B = ( 1,2 ] \cup ( 5,10 )$.

Question 23: 24. If the solution set of the inequality $m x ^ { 2 } + n x + 3 > 0$ is $\{ x \mid - 1 < x < 3 \}$ ...

24. If the solution set of the inequality $m x ^ { 2 } + n x + 3 > 0$ is $\{ x \mid - 1 < x < 3 \}$ then the solution set of the inequality $n x ^ { 2 } - m x - 1 < 0$ is

  • A. A. $\{ x \mid - 1 < x < 3 \}$
  • B. B. $\{ x \mid - 3 < x < 2 \}$
  • C. C. $\left\{ x \left\lvert \, - 1 < x < \frac { 1 } { 2 } \right. \right\}$
  • D. D. $\{ x \mid - 3 < x < 1 \}$

Answer: C

Solution: Since the solution set of the inequality $m x ^ { 2 } + n x + 3 > 0$ is $\{ x \mid - 1 < x < 3 \}$, the So the two roots of the equation $m x ^ { 2 } + n x + 3 = 0$ are - 1 and 3 respectively So $\left\{ \begin{array} { l } - 1 + 3 = - \frac { n } { m } \\ - 1 \times 3 = \frac { 3 } { m } \\ m < 0 \end{array} \right.$ solves for $\left\{ \begin{array} { l } m = - 1 \\ n = 2 \end{array} \right.$, and $n x ^ { 2 } - m x - 1 < 0$ solves for $2 x ^ { 2 } + x - 1 < 0$. Substituting the inequality $n x ^ { 2 } - m x - 1 < 0$, we get i.e. $2 x ^ { 2 } + x - 1 < 0$, i.e. $( 2 x - 1 ) ( x + 1 ) < 0$. The solution is $- 1 < x < \frac { 1 } { 2 }$ , and So the solution set of the inequality is $\left\{ x \left\lvert \, - 1 < x < \frac { 1 } { 2 } \right. \right\}$.

Question 24: 25. It is known that the set $A = \left\{ * x ^ { 2 } - x - 2 < 0 \right\} , B = \left\{ * y = x ^ {...

25. It is known that the set $A = \left\{ * x ^ { 2 } - x - 2 < 0 \right\} , B = \left\{ * y = x ^ { 2 } , x \in A \right\}$, then $A \cap B =$

  • A. A. $( 0,2 )$
  • B. B. $[ 0,2 )$
  • C. C. $( 1,4 )$
  • D. D. $[ 1,4 )$

Answer: B

Solution: Since $x ^ { 2 } - x - 2 < 0$, $( x + 1 ) ( x - 2 ) < 0$, i.e. $- 1 < x < 2$. so $A = \{ * - 1 < x < 2 \}$ that $A = \{ * - 1 < x < 2 \}$ Since $y = x ^ { 2 } , x \in A$ , when $x = 0 , y _ { \text {min } } = 0$ , the When $x = 2 , y = 4$, so $0 \leq y < 4$. $\therefore B = \{ \psi 0 \leq y < 4 \} , \therefore A \cap B = [ 0,2 )$

Question 25: 26. If the set $A = \{ x \mid \geq 0 \} , B = \{ x \mid ( x + 1 ) ( x - 5 ) < 0 \}$ is known then $A...

26. If the set $A = \{ x \mid \geq 0 \} , B = \{ x \mid ( x + 1 ) ( x - 5 ) < 0 \}$ is known then $A \cap B =$ 5)

  • A. A. $[ - 1,4 )$
  • B. B. $[ 0,5 )$
  • C. C. $[ 1,4 ]$
  • D. D. $[ - 4 , - 1 ) \cup [ 4$.

Answer: B

Solution: From the question, we have $B = \{ x \mid - 1 < x < 5 \}$, so $A \cap B = \{ x \mid \geq 0 \} \cap \{ x \mid - 1 < x < 5 \} = [ 0,5 )$. Choose B.

Question 26: 27. If the solution set of the inequality $x ^ { 2 } + p x + q < 0$ is $\left( - \frac { 1 } { 2 } ,...

27. If the solution set of the inequality $x ^ { 2 } + p x + q < 0$ is $\left( - \frac { 1 } { 2 } , \frac { 1 } { 3 } \right)$, then the solution set of the inequality $q x ^ { 2 } + p x + 1 > 0$ is ( ).

  • A. A. $( - 3,2 )$
  • B. B. (- 2,3)
  • C. C. $\left( - \frac { 1 } { 3 } , \frac { 1 } { 2 } \right)$
  • D. D. $\mathbf { R }$

Answer: B

Solution: From the question, $- \frac { 1 } { 2 } , \frac { 1 } { 3 }$ is two real roots of the equation $x ^ { 2 } + p x + q = 0$. Then $\left\{ \begin{array} { l } - \frac { 1 } { 2 } + \frac { 1 } { 3 } = - p \\ \frac { 1 } { 2 } \times \frac { 1 } { 3 } = q \end{array} \right.$ is solved by $p = \frac { 1 } { 6 } , q = - \frac { 1 } { 6 }$, and $p = \frac { 1 } { 6 } , q = - \frac { 1 } { 6 }$ is solved by $p = \frac { 1 } { 6 } , q = - \frac { 1 } { 6 }$. The inequality $q x ^ { 2 } + p x + 1 > 0$ is then $- \frac { 1 } { 6 } x ^ { 2 } + \frac { 1 } { 6 } x + 1 > 0$, and which is $x ^ { 2 } - x - 6 < 0$ and solves for $- 2 < x < 3$. So the solution set of the inequality $q x ^ { 2 } + p x + 1 > 0$ is $( - 2,3 )$.

Question 27: 28. If the set $U = \mathrm { R }$ and the set $A = \{ x \mid \sqrt { x + 3 } > 2 \} , B = \left\{ y...

28. If the set $U = \mathrm { R }$ and the set $A = \{ x \mid \sqrt { x + 3 } > 2 \} , B = \left\{ y \mid y = x ^ { 2 } + 2 \right\}$ are known to be equal to $A \cap ($ $B )$, then $A \cap ($ $B )$ equals to

  • A. A. R
  • B. B. $( 1,2 ]$
  • C. C. $( 1,2 )$
  • D. D. $[ 2 , + \infty )$

Answer: C

Solution: Solving the inequality $\sqrt { x + 3 } > 2$ yields: $x > 1$, i.e., $A = ( 1 , + \infty ) , x \in \mathrm { R } , y = x ^ { 2 } + 2 \geq 2$, i.e., $B = [ 2 , + \infty )$. So we have $\Phi _ { J } B = ( - \infty , 2 )$, so $A \cap \left( \Phi _ { U } B \right) = ( 1,2 )$.

Question 28: 29. The following propositions are necessary conditions for $q$ to be $p$.

29. The following propositions are necessary conditions for $q$ to be $p$.

  • A. A. $p : A \cap B = A , q : A \subseteq B$
  • B. B. $p : x ^ { 2 } - 2 x - 3 = 0 , q : x = - 1$
  • C. C. $p : | x | < 1 , q : x < 0$
  • D. D. $p : x ^ { 2 } > 2 , q : x > 2$

Answer: A

Solution: For $\mathrm { A } , p : A \cap B = A \Rightarrow q : A \subseteq B$, so A is correct; For B, $p : x ^ { 2 } - 2 x - 3 = 0 \Leftrightarrow x = - 1 _ { \text {或 } } x = 3$, so B is wrong; For C, $p : | x | < 1 \Leftrightarrow - 1 < x < 1$, so C is wrong; For D, $p : x ^ { 2 } > 2 \Leftrightarrow x > \sqrt { 2 }$ or $^ { x } < - \sqrt { 2 }$, so D is wrong.

Question 29: 30. Let ${ } _ { x \in \mathbf { R } }$, then "$0 < x < 1$" is "$\frac { 1 } { x } > 1$", and what i...

30. Let ${ } _ { x \in \mathbf { R } }$, then "$0 < x < 1$" is "$\frac { 1 } { x } > 1$", and what is the condition for the establishment of the

  • A. A. unnecessary
  • B. B. unnecessary and insufficient
  • C. C. substitute
  • D. D. Neither sufficient nor necessary

Answer: C

Solution: Because $0 < x < 1$ holds when $\frac { 1 } { x } > 1$ When $\frac { 1 } { x } > 1$, $\frac { 1 - x } { x } > 0$, so $0 < x < 1$, and Then "$0 < x < 1$" is a sufficient condition for "$\frac { 1 } { x } > 1$" to hold.

Question 30: 31. The function $f ( x ) = \log _ { \pi } \left( \frac { 2 x + 3 } { x - 1 } - 1 \right)$ has a dom...

31. The function $f ( x ) = \log _ { \pi } \left( \frac { 2 x + 3 } { x - 1 } - 1 \right)$ has a domain of definition of ( ).

  • A. A. $\left\{ x | x \rangle 1 _ { \text {或 } } x < - 4 \right\}$
  • B. B. $\{ x - 4 < x < 1 \}$
  • C. C. $\{ * x \neq 1 \}$
  • D. D. $\{ * x > - 4$ and $x \neq 1 \}$

Answer: A

Solution: From the question, we know $\frac { 2 x + 3 } { x - 1 } - 1 > 0$, and solve $x > 1$ or $x < - 4$. That is, the function $f ( x )$ is defined by $\{ * x > 1$ or $x < - 4 \}$.

Question 31: 32. Let the set $A = \left\{ x \mid x ^ { 2 } \leq x \right\} , B = \left\{ x \left\lvert \, \frac {...

32. Let the set $A = \left\{ x \mid x ^ { 2 } \leq x \right\} , B = \left\{ x \left\lvert \, \frac { 1 } { x } \geq 1 \right. \right\}$ be $A \cap B = ( \quad )$, then $A \cap B = ( \quad )$

  • A. A. $( 0,1 ]$
  • B. B. $[ 0,1 ]$
  • C. C. $( - \infty , 1 ]$
  • D. D. $( - \infty , 0 ) \cup ( 0,1 ]$

Answer: A

Solution: Solving the inequality $x ^ { 2 } \leq x$ yields: $A = \{ x \mid 0 \leq x \leq 1 \}$ , and Solving the inequality $\frac { 1 } { x } \geq 1$ yields $B = \{ x \mid 0 < x \leq 1 \}$. Combining this with the definition of intersection gives $A \cap B = ( 0,1 ]$.

Question 32: 33. If two positive real numbers $x , y$ satisfy $x ( 1 + \ln x ) = y \mathrm { e } ^ { y - 1 }$, gi...

33. If two positive real numbers $x , y$ satisfy $x ( 1 + \ln x ) = y \mathrm { e } ^ { y - 1 }$, give the following inequalities: (1) $y < x < 1$; (2) $1 < x < y$ ; (3) $1 < y < x$ ; (4) $y < 1 < x$ . The number of these that may hold is ( )

  • A. A. 0
  • B. B. 1
  • C. C. 2
  • D. D. 3

Answer: C

Solution: $x ( 1 + \ln x ) = y \mathrm { e } ^ { y - 1 } \Rightarrow y \mathrm { e } ^ { y - 1 } = ( 1 + \ln x ) \mathrm { e } ^ { 1 + \ln x - 1 }$, the constructor $f ( y ) = y \mathrm { e } ^ { y } ( y > 0 ) \Rightarrow f ^ { \prime } ( y ) = ( y + 1 ) \mathrm { e } ^ { y } > 0$, so the function $f ( y )$ is increasing on the set of positive real numbers. Since $x$ is positive real, it follows from $x ( 1 + \ln x ) = y \mathrm { e } ^ { y - 1 } \Rightarrow 1 + \ln x > 0$ that Therefore by ${ } ^ { y \mathrm { e } ^ { y - 1 } } = ( 1 + \ln x ) \mathrm { e } ^ { 1 + \ln x - 1 } \Rightarrow f ( y ) = f ( 1 + \ln x ) \Rightarrow y = 1 + \ln x$ , the Let $g ( y ) = 1 + \ln y - y \Rightarrow g ^ { \prime } ( y ) = \frac { 1 - y } { y }$, when $y > 1$, $g ^ { \prime } ( y ) < 0 , g ( y )$ monotonically decreases, when $0 < y < 1 _ { \text {时 } , ~ } g ^ { \prime } ( y ) > 0 , g ( y )$ monotonically increases, so $g ( y ) _ { \text {max } } = g ( 1 ) = 0$, so we have $g ( y ) _ { \text {max } } = g ( 1 ) = 0$. INLINE_FORMULA_11]], and $y = 1 + \ln x$, so $y \leq x$, taking the equal sign when and only when $y = x = 1$, and when $x \neq 1$, , and from the above, $y < x < 1$, or $1 < y < x$. [点睛]Key point : The deformation of the equation to construct a function and the use of the nature of the derivative is the key to solving the problem. 34 The D [Knowledge Points] Determine the parameters from the solution of the quadratic inequality, solve the quadratic inequality without parameters [Analysis]the inequality is $( x - a ) ( x - 1 ) < 0$, divided into $a > 1$ and $a < 1$ two cases of discussion, to find the solution set of the inequality, combined with the meaning of the problem and the representation of the set, can be solved. By the meaning of the question, the inequality $x ^ { 2 } - ( a + 1 ) x + a < 0$ can be reduced to $( x - a ) ( x - 1 ) < 0$, and when $a > 1$, the solution set of the inequality $x ^ { 2 } - ( a + 1 ) _ { x + a < 0 }$ will be $( 1 , a )$. To have exactly 3 integers in the solution set of the inequality $x ^ { 2 } - ( a + 1 ) x + a < 0$, $4 < a \leq 5$; when $a < 1$ is $a < 1$ the solution set of the inequality $x ^ { 2 } - ( a + 1 ) x + a < 0$ is $( a , 1 )$. 31]]. If there are exactly 3 integers in the solution set of the inequality $x ^ { 2 } - ( a + 1 ) x + a < 0$, then $- 3 \leq a < - 2$ , and the range of the real number ${ } ^ { a }$ is $[ - 3 , - 2 ) \cup ( 4,5 ]$. Therefore, the choice: D. [Eyesight] This question mainly examines the solution of quadratic inequality and its application, in which the answer to memorize the solution of quadratic inequality, combined with the relationship between the elements and the set of solutions is the key to the answer, focusing on the examination of arithmetic and the ability to solve.

Question 33: 34. If there are exactly 3 integers in the solution set of the inequality $x$ for $x ^ { 2 } - ( a +...

34. If there are exactly 3 integers in the solution set of the inequality $x$ for $x ^ { 2 } - ( a + 1 ) x + a < 0$, then the range of real numbers ${ } ^ { a }$ is

  • A. A. $( 4,5 )$
  • B. B. $( - 3 , - 2 ) \cup ( 4,5 )$
  • C. C. $( 4,5 ]$
  • D. D. $[ - 3 , - 2 ) \cup ( 4,5 ]$

Answer: D

Solution:

Question 34: 35. If the intersection of the line $l$ and the line $y = - 2 x + 3$ passing through the point $P ( ...

35. If the intersection of the line $l$ and the line $y = - 2 x + 3$ passing through the point $P ( 1 , - 1 )$ is in the first quadrant, then the slope of the line $l$ has the range

  • A. A. $( - 4,2 )$
  • B. B. $( - \infty , - 4 ] \cup [ 2 , + \infty )$
  • C. C. $( - \infty , - 4 ) \cup ( 2 , + \infty )$
  • D. D. $( - \infty , - 2 ) \cup ( 2 , + \infty )$

Answer: C

Solution: By the question the slope of the line $l$ exists, then let the slope of the line $l$ be $k$ and the equation of $l$ be: $y + 1 = k ( x - 1 )$. The equation of $y = - 2 x + 3$ is $\left\{ \begin{array} { l } y - k x = - ( k + 1 ) \\ y + 2 x = 3 \end{array} \right.$, which is solved by $\left\{ \begin{array} { l } x = \frac { k + 4 } { k + 2 } \\ y = \frac { k - 2 } { k + 2 } \end{array} \right.$, and $\left( \frac { k + 4 } { k + 2 } , \frac { k - 2 } { k + 2 } \right)$ is $\left\{ \begin{array} { l } \frac { k + 4 } { k + 2 } > 0 \\ \frac { k - 2 } { k + 2 } > 0 \end{array} \right.$, which is $k \in ( - \infty , - 4 ) \cup ( 2 , + \infty )$. Therefore, the coordinates of the intersection point are $\left( \frac { k + 4 } { k + 2 } , \frac { k - 2 } { k + 2 } \right)$. Since it is in the first quadrant, then $\left\{ \begin{array} { l } \frac { k + 4 } { k + 2 } > 0 \\ \frac { k - 2 } { k + 2 } > 0 \end{array} \right.$ The solution is $k \in ( - \infty , - 4 ) \cup ( 2 , + \infty )$.

Question 35: 36. The function $f ( x )$ is defined in the domain $D$ if it satisfies (1) $f ( x )$ is monotonic i...

36. The function $f ( x )$ is defined in the domain $D$ if it satisfies (1) $f ( x )$ is monotonic in $D$; (2) there exists $[ a , b ] \subseteq D ( a < b )$ such that the range of values of $f ( x )$ on ${ } ^ { [ a , b ] }$ is also ${ } ^ { [ a , b ] }$, and ${ } ^ { y = f ( x ) }$ is said to be a Gaussian function. If $f ( x ) = k + \sqrt { x - 3 }$ is a Gaussian function, then the range of values of the real number $k$ is ( ).

  • A. A. $\left[ \frac { 11 } { 4 } , 3 \right]$
  • B. B. $\left( \frac { 1 } { 2 } , \frac { 11 } { 4 } \right)$
  • C. C. $\left( \frac { 11 } { 4 } , + \infty \right)$
  • D. D. $\left( \frac { 11 } { 4 } , 3 \right]$

Answer: D

Solution: Since $f ( x ) = k + \sqrt { x - 3 }$ is monotonically increasing on $x \in [ 3 , + \infty )$, $f ( x ) = k + \sqrt { x - 3 }$ is monotonically increasing on $x \in [ 3 , + \infty )$. From the question $\left\{ \begin{array} { l } f ( a ) = k + \sqrt { a - 3 } = a \\ f ( b ) = k + \sqrt { b - 3 } = b \end{array} \right.$, we know that $\left\{ \begin{array} { l } f ( a ) = k + \sqrt { a - 3 } = a \\ f ( b ) = k + \sqrt { b - 3 } = b \end{array} \right.$ So the two unequal real roots on $a , b _ { \text {是方程 } } k + \sqrt { x - 3 } = x _ { \text {在 } } x \in [ 3 , + \infty )$. such that $t = \sqrt { x - 3 } ( t \geq 0 )$ , then $x = t ^ { 2 } + 3 ( t \geq 0 )$ , and $x = t ^ { 2 } + 3 ( t \geq 0 )$ , and $x = t ^ { 2 } + 3 ( t \geq 0 )$ . So there are two unequal real roots on $t ^ { 2 } - t + 3 - k = 0 _ { \text {在 } } t \in [ 0 , + \infty )$. such that $g ( t ) = t ^ { 2 } - t + 3 - k$, the axis of symmetry $t = \frac { 1 } { 2 }$ , the Then $\left\{ \begin{array} { l } g ( 0 ) \geq 0 \\ \Delta = 1 - 4 \times ( 3 - k ) > 0 \end{array} \right.$, which is $\left\{ \begin{array} { l } 3 - k \geq 0 \\ 4 k - 11 > 0 \end{array} \right.$, solves $\frac { 11 } { 4 } < k \leq 3$, and $\frac { 11 } { 4 } < k \leq 3$, which is $\frac { 11 } { 4 } < k \leq 3$. So the real number $k$ is in the range $\left( \frac { 11 } { 4 } , 3 \right]$.

Question 36: The inequality ${ } ^ { 2 x ^ { 2 } - a x y + y ^ { 2 } \geq 0 }$ holds for any $1 \leq x \leq 2$ an...

The inequality ${ } ^ { 2 x ^ { 2 } - a x y + y ^ { 2 } \geq 0 }$ holds for any $1 \leq x \leq 2$ and $1 \leq y \leq 3$, then the range of values of the real number $a$ is is

  • A. A. $\{ a \mid a \leq 2 \sqrt { 2 } \}$
  • B. B. $\{ a \mid a \geq 2 \sqrt { 2 } \}$
  • C. C. $\left\{ a \left\lvert \, a \leq \frac { 1 } { 3 } \right. \right\}$
  • D. D. $\left\{ a \left\lvert \, a \leq \frac { 9 } { 2 } \right. \right\}$

Answer: A

Solution: From $y \in [ 1,3 ]$, the inequality $2 x ^ { 2 } - a x y + y ^ { 2 } \geq 0$ is reduced to both sides of $\frac { 1 } { y ^ { 2 } }$ by multiplying both sides simultaneously: $2 \frac { \partial \ddot { q } } { \partial y } - a \frac { \partial \ddot { \dot { y } } } { \dot { \bar { t } } } 1 ^ { 3 } 0$, the By $t = \frac { x } { y }$, the inequality is transformed into: $2 t ^ { 2 } - a t + 1 \geq 0$, which is constant on $t \in \left[ \frac { 1 } { 3 } , 2 \right]$, and by $2 t ^ { 2 } - a t + 1 \geq 0$, we have ![](/images/questions/inequality/image-004.jpg) Also $2 t + \frac { 1 } { t } \geq 2 \sqrt { 2 t \times \frac { 1 } { t } } = 2 \sqrt { 2 }$, take the equal sign if and only if $t = \frac { \sqrt { 2 } } { 2 }$, so $t = \frac { \sqrt { 2 } } { 2 }$ is minimized when $2 t + \frac { 1 } { t }$ $2 \sqrt { 2 }$. Therefore, $a \leq 2 \sqrt { 2 }$ is obtained.

Question 37: 39. If the real number $a , b , c$ satisfies $| a - c | < | b |$, then the following inequality must...

39. If the real number $a , b , c$ satisfies $| a - c | < | b |$, then the following inequality must hold true

  • A. A. $| a | > | b | - | c |$
  • B. B. $| a | < | b | + | c |$
  • C. C. $a > c - b$
  • D. D. $a < b + c$

Answer: B

Solution: Take $a = 1 , b = 10 , c = 2$, satisfy $| a - c | < | b |$, and $| a | < | b | - | c |$, option $A$ error; Take $a = - 2 , b = - 10 , c = - 4$, satisfy $| a - c | < | b |$, and $a < c - b$, option $C$ is wrong; Take $a = - 2 , b = - 10 , c = - 4$, satisfy $| a - c | < | b |$, and $a > b + c$, option $D$ is wrong; For option $B$ , by the nature of the absolute value inequality $| a - c | \geq | a | - | c |$ , the From the question $| a - c | < | b |$ , we can see that $| a - c | < | b |$ By the transitivity of the inequality $| a | - | c | < | b |$, i.e., $| a | < | b | + | c |$, the option $B$ is correct. This question chooses $B$ option. [点睛]本题主要考查绝对值不平等的性质及其应用,意意考查学生的转化能力和计算求解能力. $40 . \mathrm { D }$ [Knowledge Points] known modulus to find the product of quantities, a quadratic inequality on the set of real numbers constant problem [Analysis]First from the conditions according to the formula of vector modulus can be calculated $a \cdot b = - \frac { 3 } { 2 }$, and then the inequality is constant to $36 t ^ { 2 } - 6 k t + 4 k ^ { 2 } - 1 > 0$ for any real $t$ constant, according to the conditions of a quadratic inequality is constant to set out the inequality solving The solution can be found in the following table. Because $| a - b | = 4$ is $| a - b | ^ { 2 } = ( a - b ) ^ { 2 } = a ^ { 2 } + b ^ { 2 } - 2 a \cdot b = | a | ^ { 2 } + | b | ^ { 2 } - 2 a \cdot b = 16$, $| a - b | ^ { 2 } = ( a - b ) ^ { 2 } = a ^ { 2 } + b ^ { 2 } - 2 a \cdot b = | a | ^ { 2 } + | b | ^ { 2 } - 2 a \cdot b = 16$ is $| a - b | ^ { 2 } = ( a - b ) ^ { 2 } = a ^ { 2 } + b ^ { 2 } - 2 a \cdot b = | a | ^ { 2 } + | b | ^ { 2 } - 2 a \cdot b = 16$. i.e. $4 + 9 - 2 a \cdot b = 16$ , so $a \cdot b = - \frac { 3 } { 2 }$ , and so $| k a + 2 t b | ^ { 2 } = k ^ { 2 } a ^ { 2 } + 4 t ^ { 2 } b ^ { 2 } + 4 k t a \cdot b = k ^ { 2 } | a | ^ { 2 } + 4 t ^ { 2 } | b | ^ { 2 } + 4 k t a \cdot b = 4 k ^ { 2 } + 36 t ^ { 2 } - 6 k t$ Since for any real number $t , | k a + 2 t b | > 1 ( k > 0 )$ it is constant that so $36 t ^ { 2 } - 6 k t + 4 k ^ { 2 } - 1 > 0$ holds for any real number $t$. So only $\Delta = 36 k ^ { 2 } - 144 \left( 4 k ^ { 2 } - 1 \right) < 0$ is needed because $k > 0$, so the solution is $k > \frac { 2 \sqrt { 15 } } { 15 }$.

Question 38: 40. It is known that $| a | = 2 , | b | = 3 , | a - b | = 4$, if it is constant for any real number ...

40. It is known that $| a | = 2 , | b | = 3 , | a - b | = 4$, if it is constant for any real number $t , | k a + 2 t b | > 1 ( k > 0 )$, then the range of $k$ is ( ) High School Mathematics Assignment, October 29, 2025

  • A. A. $( 0 , \sqrt { 3 } )$
  • B. B. $\left( 0 , \frac { \sqrt { 3 } } { 3 } \right)$
  • C. C. $[ \sqrt { 3 } , + \infty )$
  • D. D. $\left( \frac { 2 \sqrt { 15 } } { 15 } , + \infty \right)$

Answer: D

Solution:
Back to Topics

Inequality

不等式

38 Practice Questions

Practice with Chinese questions to prepare for the CSCA exam. You can toggle translations while practicing.

Topic Overview

Inequalities are central to comparing numerical magnitude relationships in mathematics, and are often examined in conjunction with functions, sets, and absolute value in the CSCA exam. The questions usually require solving the set of inequalities, determining the conditional relationship or analyzing the range of inequalities corresponding to the image of a function. Mastering the basic solution method and understanding the idea of combining numbers and shapes is the key to dealing with these problems.

Questions:38

Key Points

  • 1The relationship between the solution set of a quadratic inequality and the image of a quadratic function
  • 2Solution and geometric significance of absolute value inequalities
  • 3Intersection of inequalities and set operations (e.g., intersection, complement)
  • 4Using inequalities to determine sufficient necessity between conditions

Study Tips

It is recommended to understand the solution sets of inequalities in conjunction with function images and to systematically practice inequalities with absolute values or parameters through the categorical discussion method.

Practicing topics ≠ Passing the exam

Full mock exam based on official syllabus, with mixed topics like the real test

Get Mock Exams →

No credit card? Email us: kaiguo370@gmail.com