Answer: A
Solution: According to the dihedral and induction formulas, $2 \sin ^ { 2 } \left( x - \frac { \pi } { 4 } \right) - 1 = \cos \left( 2 x - \frac { \pi } { 2 } \right) = \sin 2 x$, thus
$f ( x ) = \sqrt { 3 } \sin \left( 2 x - \frac { \pi } { 6 } \right) - \sin 2 x = \frac { 1 } { 2 } \sin 2 x - \frac { \sqrt { 3 } } { 2 } \cos 2 x = \sin \left( 2 x - \frac { \pi } { 3 } \right)$.
A option, according to the trigonometric period formula, $T = \frac { 2 \pi } { 2 } = \pi$ , A option is wrong;
B option, let $2 x - \frac { \pi } { 3 } \in \left[ 2 k \pi - \frac { \pi } { 2 } , 2 k \pi + \frac { \pi } { 2 } \right] , k \in \mathbf { Z } \quad$, when solving $x \in \left[ k \pi - \frac { \pi } { 12 } , k \pi + \frac { 5 \pi } { 12 } \right] , k \in \mathbf { Z } \quad , k = 0$ can be
INLINE_FORMULA_5]] is monotonically increasing on the interval $\left[ - \frac { \pi } { 12 } , \frac { 5 \pi } { 12 } \right]$, option B is correct;
In option C, the graph of $2 x - \frac { \pi } { 3 } = k \pi + \frac { \pi } { 2 } , k \in \mathbf { Z }$ is symmetric with respect to $x = - \frac { \pi } { 12 }$ when $2 x - \frac { \pi } { 3 } = k \pi + \frac { \pi } { 2 } , k \in \mathbf { Z }$ is solved by $x = \frac { k \pi } { 2 } + \frac { 5 \pi } { 12 } , k \in \mathbf { Z } , ~ k = - 1$, and option C is correct;
In option D, $2 x - \frac { \pi } { 3 } = k \pi , k \in \mathbf { Z }$ is the horizontal coordinate of the center of symmetry, and $x = \frac { k \pi } { 2 } + \frac { \pi } { 6 } , k \in \mathbf { Z }$ is the horizontal coordinate of the center of symmetry, and $x = \frac { k \pi } { 2 } + \frac { \pi } { 6 } , k \in \mathbf { Z }$ is the horizontal coordinate of the center of symmetry.
D, $x = \frac { k \pi } { 2 } + \frac { \pi } { 6 } , k \in \mathbf { Z }$ is the horizontal coordinate of the center of symmetry, so that $x = \frac { k \pi } { 2 } + \frac { \pi } { 6 } = \frac { 2 \pi } { 3 }$ solves $k = 1$ and the image of $f ( x )$ is symmetric about the point $\left( \frac { 2 \pi } { 3 } , 0 \right)$, and option D is correct.