Skip to main content

Analytic Geometry - Practice Questions (38)

Question 1: 1. The point $A ( 1,0 ) , B ( 3,1 )$ is known, and if the line $A B$ is perpendicular to the line $x...

1. The point $A ( 1,0 ) , B ( 3,1 )$ is known, and if the line $A B$ is perpendicular to the line $x - m y + 1 = 0$, then $m =$

  • A. A. - 2
  • B. B. $- \frac { 1 } { 2 }$
  • C. C. $\frac { 1 } { 2 }$
  • D. D. 2

Answer: B

Solution: The slope of the line $A B$ is $\frac { 1 - 0 } { 3 - 1 } = \frac { 1 } { 2 }$ according to the question Since the line $A B$ is perpendicular to the line $x - m y + 1 = 0$, the slope of the line $\frac { 1 - 0 } { 3 - 1 } = \frac { 1 } { 2 }$ is $A B$. and the slope of the line $x - m y + 1 = 0$ is - 2 , . So $\frac { 1 } { m } = - 2$, which solves $m = - \frac { 1 } { 2 }$.

Question 2: 2. The parabola $y = \frac { 1 } { 2 } x ^ { 2 }$ is known and its collinear equation is

2. The parabola $y = \frac { 1 } { 2 } x ^ { 2 }$ is known and its collinear equation is

  • A. A. $x = - \frac { 1 } { 8 }$
  • B. B. $x = \frac { 1 } { 8 }$
  • C. C. $y = \frac { 1 } { 2 }$
  • D. D. $y = - \frac { 1 } { 2 }$

Answer: D

Solution:

Question 3: 3. The parabola $x ^ { 2 } = - 4 y$ has the equation of the collinear line

3. The parabola $x ^ { 2 } = - 4 y$ has the equation of the collinear line

  • A. A. $x = \frac { 1 } { 16 }$
  • B. B. $x = 1$
  • C. C. $y = 1$
  • D. D. $y = 2$

Answer: C

Solution: Since $x ^ { 2 } = - 4 y$, which is a parabola with a downward opening, its collinear equation is ${ } ^ { y = 1 }$.

Question 4: 4. If the line $y = k x - 2$ is perpendicular to the line $y = 3 x$, then $k =$

4. If the line $y = k x - 2$ is perpendicular to the line $y = 3 x$, then $k =$

  • A. A. 3
  • B. B. $\frac { 1 } { 3 }$
  • C. C. - 3
  • D. D. $- \frac { 1 } { 3 }$

Answer: D

Solution: SOLUTION: From two mutually perpendicular lines whose slopes are $\mathrm { k } _ { 1 } , \mathrm { k } _ { 2 } , \mathrm { C } ^ { \mathrm { k } _ { 1 } } \mathrm { x } _ { 2 } = - 1$ can be obtained : $k : 3 = - 1$ , solve for $k = - \frac { 1 } { 3 }$ , .

Question 5: 5. The angle of inclination of the line $y = \frac { \sqrt { 3 } } { 3 } x + 7$ is

5. The angle of inclination of the line $y = \frac { \sqrt { 3 } } { 3 } x + 7$ is

  • A. A. $\frac { \pi } { 3 }$
  • B. B. $\frac { \pi } { 4 }$
  • C. C. $\frac { \pi } { 6 }$
  • D. D. $\frac { \pi } { 2 }$

Answer: C

Solution: The slope of the straight line $y = \frac { \sqrt { 3 } } { 3 } x + 7$ is $\frac { \sqrt { 3 } } { 3 }$. Let the angle of inclination be $\alpha ( 0 \leq \alpha < \pi )$, then $\tan \alpha = \frac { \sqrt { 3 } } { 3 }$ $\therefore \alpha = \frac { \pi } { 6 }$.

Question 6: 7. If two circles $x ^ { 2 } + y ^ { 2 } + 2 \sqrt { m } x + m - 4 = 0 ( m > 0 )$ and $x ^ { 2 } + y...

7. If two circles $x ^ { 2 } + y ^ { 2 } + 2 \sqrt { m } x + m - 4 = 0 ( m > 0 )$ and $x ^ { 2 } + y ^ { 2 } - 4 \sqrt { n } y - 1 + 4 n = 0 ( n > 0 )$ have exactly three common tangents lines, then the minimum value of $\frac { 1 } { m } + \frac { 1 } { n }$ is

  • A. A. $\frac { 1 } { 9 }$
  • B. B. $\frac { 4 } { 9 }$
  • C. C. 1
  • D. D. 3

Answer: C

Solution: SOLUTION: From the question, the two circles are tangent to each other The standard equations of the two circles are $( x + \sqrt { m } ) ^ { 2 } + y ^ { 2 } = 4 , x ^ { 2 } + ( y - 2 \sqrt { n } ) ^ { 2 } = 1$ The center of the circle is $( - \sqrt { m } , 0 ) , ( 0,2 \sqrt { n } )$ and the radii are 2 and 1 respectively. Therefore, we have $\sqrt { m + 4 n } = 3$, $\sqrt { m + 4 n } = 3$ $\therefore m + 4 n = 9$ $\therefore \frac { m + 4 n } { 9 } = 1$ $\therefore \frac { 1 } { m } + \frac { 1 } { n } = \frac { m + 4 n } { 9 m } + \frac { m + 4 n } { 9 n }$ $= \frac { 1 } { 9 } + \frac { 4 } { 9 } + \frac { 4 n } { 9 m } + \frac { m } { 9 n } \geq \frac { 5 } { 9 } + 2 \sqrt { \frac { 4 } { 81 } } = 1$ $\frac { 4 n } { 9 m } = \frac { m } { 9 n }$ if and only if $m = 2 n = 3 ^ { \text {when equality holds.} }$

Question 7: 8. A social practice group in the research found a stone single-hole bridge (Figure), the bridge par...

8. A social practice group in the research found a stone single-hole bridge (Figure), the bridge parabolic arch part of the bridge span of 21.6 m, the arch from the water 10.9 m, the road thickness of about 1 m. The bridge is a parabolic arch part of the bridge span of 21.6 m, the top of the arch from the water 10.9 m, about 1 m thickness. If the group plans to use a rope from the stone railing of the bridge to lower the camera to get a view so that it falls at the focus of the parabola, the most appropriate length of the rope is ![](/images/questions/analytic-geometry/image-001.jpg)

  • A. A. 3 m
  • B. B. 4 m
  • C. C. 5 m
  • D. D. 6 m

Answer: B

Solution: Establish a plane right-angle coordinate system with the vertex of the arch section as the coordinate origin and the horizontal line as the $x$ axis, perpendicular to the $x$ axis, and in the upward direction. ![](/images/questions/analytic-geometry/image-002.jpg) Let the equation of the parabola be $x ^ { 2 } = - 2 p y ( p > 0 )$. It is easy to know that the parabola passes through the point $( 10.8 , - 10.9 )$, then $10.8 ^ { 2 } = 21.8 p$, and we get $p = \frac { 10.8 ^ { 2 } } { 21.8 }$. so $\frac { p } { 2 } = \frac { 5.4 ^ { 2 } } { 10.9 } \approx 2.7$, so $\frac { p } { 2 } + 1 \approx 3.7$.

Question 8: 9. If the equation $\frac { x ^ { 2 } } { m } + \frac { y ^ { 2 } } { 2 - m } = 1$ represents a hype...

9. If the equation $\frac { x ^ { 2 } } { m } + \frac { y ^ { 2 } } { 2 - m } = 1$ represents a hyperbola, then the range of values of the real number $m$ is

  • A. A. $( 0,2 )$
  • B. B. $( 0,1 ) \cup ( 1,2 )$
  • C. C. $( - \infty , 0 ) \cup ( 2 , + \infty )$
  • D. D. $( 2 , + \infty )$

Answer: C

Solution: If the equation $\frac { x ^ { 2 } } { m } + \frac { y ^ { 2 } } { 2 - m } = 1$ represents a hyperbola, then $m ( 2 - m ) < 0$ , solve for $m < 0$ or $m > 2$ , the That is, the real number $m$ is in the range $( - \infty , 0 ) \cup ( 2 , + \infty )$.

Question 9: 10. Let the length of the real axis and the focal length of the hyperbola $C : \frac { x ^ { 2 } } {...

10. Let the length of the real axis and the focal length of the hyperbola $C : \frac { x ^ { 2 } } { a ^ { 2 } } - \frac { y ^ { 2 } } { b ^ { 2 } } = 1 ( a > 0 , b > 0 )$ be 2,4 respectively, then the asymptote of the hyperbola $C$ is equation is

  • A. A. $y = \pm \frac { \sqrt { 3 } } { 3 } x$
  • B. B. $y = \pm \frac { 1 } { 3 } x$
  • C. C. $y = \pm \sqrt { 3 } x$
  • D. D. $y = \pm 3 x$

Answer: C

Solution: Since $2 a = 2,2 c = 4$, the asymptotic equation of $a = 1 , c = 2 , b = \sqrt { 3 }$ is $C$.

Question 10: 11. It is known that the hyperbola $\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 9 } = 1$ , th...

11. It is known that the hyperbola $\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 9 } = 1$ , then the coordinates of the foci of the hyperbola are

  • A. A. $( - \sqrt { 7 } , 0 ) , ( \sqrt { 7 } , 0 )$
  • B. B. $( - 5,0 ) , ( 5,0 )$
  • C. C. $( 0 , - 5 ) , ( 0,5 )$
  • D. D. $( 0 , - \sqrt { 7 } ) , ( 0 , \sqrt { 7 } )$

Answer: B

Solution: According to the hyperbolic equation $\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 9 } = 1$, the focus is on the $x$ axis, $a ^ { 2 } = 16 , b ^ { 2 } = 9$ $\therefore c ^ { 2 } = a ^ { 2 } + b ^ { 2 } = 16 + 9 = 25$, i.e. ${ } ^ { c = 5 }$. Therefore, the focus is $( - 5,0 ) , ( 5,0 )$.

Question 11: 12. Parallel lines \$$l _ { 1 } : 2 x - y + 2 = 0 \text { and }$ l _ { 2 } : m x - y - 3 = 0$ is th...

12. Parallel lines \$$l _ { 1 } : 2 x - y + 2 = 0 \text { and }$ l _ { 2 } : m x - y - 3 = 0$ is the distance between the

  • A. A. 5
  • B. B. $\frac { 1 } { 5 }\$
  • C. C. $\sqrt { 5 }$
  • D. D. $\frac { \sqrt { 5 } } { 5 }$

Answer: C

Solution: Since $l _ { 1 } \| l _ { 2 }$, ${ } ^ { 2 \times ( - 1 ) - ( - 1 ) \times m = 0 }$, solve for $m = 2$ and the distance between $l _ { 1 } , l _ { 2 }$ is $\frac { | 2 + 3 | } { \sqrt { 2 ^ { 2 } + ( - 1 ) ^ { 2 } } } = \sqrt { 5 }$.

Question 12: 13. For the circle ${ } ^ { C : } x ^ { 2 } + y ^ { 2 } - 4 x + 1 = 0$, the following statements are...

13. For the circle ${ } ^ { C : } x ^ { 2 } + y ^ { 2 } - 4 x + 1 = 0$, the following statements are correct ( )

  • A. A. Inside the circle ${ } ^ { A ( 1 , - 1 ) }$ of $C$.
  • B. B. The center of circle $C$ is $( - 2,0 )$.
  • C. C. The circle $C$ has a radius of 3.
  • D. D. The circle $C$ is tangent to the line $y = 3$.

Answer: A

Solution: For A, substituting the point $A ( 1 , - 1 )$ into the circle $C$ yields $1 ^ { 2 } + ( - 1 ) ^ { 2 } - 4 \times 1 + 1 = - 1 < 0$, so the point $A ( 1 , - 1 )$ is in the interior of the circle $C$, and so A is correct; For $\mathrm { B } , \mathrm { C }$, from $x ^ { 2 } + y ^ { 2 } - 4 x + 1 = 0$, we get $( x - 2 ) ^ { 2 } + y ^ { 2 } = 3$, so the center of circle $C$ is $( 2,0 )$, and the radius is $r = \sqrt { 3 }$. FORMULA_10]], so B and C are wrong; For D, the distance from the center of circle $C ( 2,0 ) _ { \text {to the line } } y = 3$ is $d = | 3 - 0 | = 3$, so $3 > \sqrt { 3 }$, that is, $d > r$, and the circle $C _ { \text {and直线 } } { } ^ { y = 3 }$ is away from each other, so D is wrong. D. Error.

Question 13: 14. A line passing through the focus $y ^ { 2 } = 4 x$ of the parabola $F$ intersects the parabola a...

14. A line passing through the focus $y ^ { 2 } = 4 x$ of the parabola $F$ intersects the parabola at two points $A , B$, and $M$ is the mid-point of the line segment $A B$. INLINE_FORMULA_5]] is the diameter of the circle must be ( )

  • A. A. pass through the origin
  • B. B. Passing point $( - 1,0 )$
  • C. C. Tangent to the line $x = - 1$.
  • D. D. Tangent to the line $y = - 1$.

Answer: C

Solution: Let $A \left( x _ { 1 } , y _ { 1 } \right) , B \left( x _ { 2 } , y _ { 2 } \right)$ , using the focal radius formula we can get: $| A B | = x _ { 1 } + x _ { 2 } + p$ , and $^ { M \left( \frac { x _ { 1 } + x _ { 2 } } { 2 } , \frac { y _ { 1 } + y _ { 2 } } { 2 } \right) }$ , so the distance from $M$ to the line $x = - 1$ is $d = \frac { x _ { 1 } + x _ { 2 } + p } { 2 } = \frac { 1 } { 2 } | A B |$ , so the circle with the line segment $A B$ as the diameter must be a straight line $x = - 1$. INLINE_FORMULA_5]], so the circle with diameter $A B$ is tangent to the line $x = - 1$.

Question 14: 15. The following statements are false ( )

15. The following statements are false ( )

  • A. A. The intercept of the straight line $y = 5 x - 3$ on the $^ { y }$ axis is ${ } ^ { - 3 }$.
  • B. B. A direction vector of the line $\sqrt { 3 } x - y + 1 = 0$ is $( - \sqrt { 3 } , - 3 )$
  • C. C. Passes through the point ${ } ^ { ( 3,4 ) }$ and at $x , y _ { \text {轴上的截距相等的直线方程为 } } x + y - 7 = 0$
  • D. D. $A ( 1,3 ) , B ( 2,5 ) , C ( - 2 , - 3 )$ Three-point common line

Answer: C

Solution:

Question 15: 16. The equation $x ^ { 2 } + y ^ { 2 } + m x - 2 y + m + 4 = 0$ represents a circle, then the range...

16. The equation $x ^ { 2 } + y ^ { 2 } + m x - 2 y + m + 4 = 0$ represents a circle, then the range of values of $m$ is ( )

  • A. A. $( - \infty , - 2 ) \cup ( 6 , + \infty )$
  • B. B. $( - 2,6 )$
  • C. C. $( - ¥ , - 6 ) \cup ( 2 , + ¥ )$
  • D. D. $( - 6,2 )$

Answer: A

Solution: From the question, we can get $m ^ { 2 } + ( - 2 ) ^ { 2 } - 4 ( m + 4 ) > 0$, which is $m ^ { 2 } - 4 m - 12 > 0$ and solve $m < - 2$ or $m > 6$. So choose: A

Question 16: 17. The standard equation of the ellipse $\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1...

17. The standard equation of the ellipse $\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1$ that has the same focus as the ellipse $( 5,3 )$ and passes through the point $( 5,3 )$ is ( ).

  • A. A. $\frac { x ^ { 2 } } { 24 } + \frac { y ^ { 2 } } { 40 } = 1$
  • B. B. $\frac { x ^ { 2 } } { 40 } + \frac { y ^ { 2 } } { 24 } = 1$
  • C. C. $\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 20 } = 1$
  • D. D. $\frac { x ^ { 2 } } { 40 } + \frac { y ^ { 2 } } { 26 } = 1$

Answer: B

Solution: SOLUTION: According to the question, the ellipse $\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1$ has foci at $( - 4,0 )$ and $( 4,0 )$, which requires that the ellipse's foci are at $x$ axis and ${ } ^ { c = 4 }$; and from the fact that the ellipse passes through the points $( 5,3 )$ then we have $2 a = \sqrt { 81 + 9 } = \sqrt { 1 + 9 } = 4 \sqrt { 10 }$ and $a = 2 \sqrt { 10 }$. then $b = \sqrt { a ^ { 2 } - c ^ { 2 } } = \sqrt { 40 - 16 } = \sqrt { 24 }$; Therefore, the standard equation of the required ellipse is $\frac { x ^ { 2 } } { 40 } + \frac { y ^ { 2 } } { 24 } = 1$;

Question 17: 18. If the distance from a point on the hyperbola $\frac { x ^ { 2 } } { a ^ { 2 } } - \frac { y ^ {...

18. If the distance from a point on the hyperbola $\frac { x ^ { 2 } } { a ^ { 2 } } - \frac { y ^ { 2 } } { b ^ { 2 } } = 1 ( a > 0 , b > 0 )$ to the focus $( - \sqrt { 5 } , 0 )$ is greater than the distance from the focus $( \sqrt { 5 } , 0 )$ $b$, then the equation of the hyperbola is ( )

  • A. A. $\frac { x ^ { 2 } } { 4 } - y ^ { 2 } = 1$
  • B. B. $\frac { x ^ { 2 } } { 2 } - y ^ { 2 } = 1$
  • C. C. $x ^ { 2 } - \frac { y ^ { 2 } } { 2 } = 1$
  • D. D. $x ^ { 2 } - \frac { y ^ { 2 } } { 4 } = 1$

Answer: D

Solution: From the question, we know that $c = \sqrt { 5 }$ , according to the question, by the definition of hyperbola, we know that $2 a = b$ , and $a ^ { 2 } + b ^ { 2 } = c ^ { 2 }$ , the So $5 a ^ { 2 } = 5$ , we get $a ^ { 2 } = 1 , b ^ { 2 } = 4$ , so the equation of the hyperbola is $x ^ { 2 } - \frac { y ^ { 2 } } { 4 } = 1$ .

Question 18: 19. "$0 < a < 3$" is the "[INLINE_FORMULA_1]] hyperbola $\frac { x ^ { 2 } } { a } - \frac { y ^ { 2...

19. "$0 < a < 3$" is the "[INLINE_FORMULA_1]] hyperbola $\frac { x ^ { 2 } } { a } - \frac { y ^ { 2 } } { 9 } = 1 ( a > 0 )$ with centroid greater than 2" ( )

  • A. A. sufficient and unnecessary condition (math.)
  • B. B. necessary but insufficient condition (math.)
  • C. C. necessary and sufficient condition
  • D. D. Neither sufficient nor necessary condition

Answer: C

Solution: If the eccentricity of the hyperbola $\frac { x ^ { 2 } } { a } - \frac { y ^ { 2 } } { 9 } = 1 ( a > 0 )$ is greater than ${ } _ { 2 }$, then $\left\{ \begin{array} { l } e = \sqrt { \frac { a + 9 } { a } } > 2 \\ a > 0 \end{array} \right.$, solving for ${ } _ { 0 < a < 3 }$. So " $0 < a < 3$" is a sufficient condition for "the centroid of hyperbola $\frac { x ^ { 2 } } { a } - \frac { y ^ { 2 } } { 9 } = 1 ( a > 0 )$ is greater than 2";

Question 19: 20. The distance from the center of the circle $C : x ^ { 2 } + y ^ { 2 } - 2 y = 1$ to the asymptot...

20. The distance from the center of the circle $C : x ^ { 2 } + y ^ { 2 } - 2 y = 1$ to the asymptote of the hyperbola $E : \frac { x ^ { 2 } } { 4 } - y ^ { 2 } = 1$ is ( ).

  • A. A. $\frac { \sqrt { 5 } } { 5 }$
  • B. B. $\frac { 2 \sqrt { 5 } } { 5 }$
  • C. C. $\frac { 3 \sqrt { 5 } } { 5 }$
  • D. D. $\frac { 4 \sqrt { 5 } } { 5 }$

Answer: B

Solution: The center $( 0,1 )$ of the circle $C : x ^ { 2 } + y ^ { 2 } - 2 y = 1$. the asymptote $y = \pm \frac { 1 } { 2 } x$ of the hyperbola $E : \frac { x ^ { 2 } } { 4 } - y ^ { 2 } = 1$, i.e. $x \pm 2 y = 0$ So the distance from the center of the circle to the asymptote is $\frac { | 2 | } { \sqrt { 5 } } = \frac { 2 \sqrt { 5 } } { 5 }$.

Question 20: 21. The angle of inclination of the line ${ } ^ { x + \sqrt { 3 } y + 2 = 0 }$ is ( ).

21. The angle of inclination of the line ${ } ^ { x + \sqrt { 3 } y + 2 = 0 }$ is ( ).

  • A. A. $150 ^ { \circ }$
  • B. B. $120 ^ { \circ }$
  • C. C. $60 ^ { \circ }$
  • D. D. $- 30 ^ { \circ }$

Answer: A

Solution: The slope of the line $x + \sqrt { 3 } y + 2 = 0$ is $k = - \frac { 1 } { \sqrt { 3 } } = - \frac { \sqrt { 3 } } { 3 }$ from the question So the angle of inclination of the line $x + \sqrt { 3 } y + 2 = 0$ is $150 ^ { \circ }$.

Question 21: 22. If the chord of a line ${ } ^ { x - y - 2 = 0 }$ intercepted by a circle $^ { ( x - a ) ^ { 2 } ...

22. If the chord of a line ${ } ^ { x - y - 2 = 0 }$ intercepted by a circle $^ { ( x - a ) ^ { 2 } + y ^ { 2 } = 4 }$ is ${ } ^ { 2 \sqrt { 2 } }$, then the real number $a _ { \text {的值为( )} }$ is $a _ { \text {的值为( )} }$.

  • A. A. - 1 or 3
  • B. B. 1 or 3
  • C. C. 0 or 4
  • D. D. - 2 or 6

Answer: C

Solution: SOLUTION: From the circle $( x - a ) ^ { 2 } + y ^ { 2 } = 4$, get the center $( a , 0 )$, radius $r = 2$, then the distance from the center of the circle to the straight line $d = \frac { | a - 2 | } { \sqrt { 2 } }$, and the length of the chord $= 2 \sqrt { r ^ { 2 } - d ^ { 2 } } = 2 \sqrt { 4 - \frac { ( a - 2 ) ^ { 2 } } { 2 } } = 2 \sqrt { 2 }$, and solve for [$( a , 0 )$.

Question 22: It is known that the left and right foci of the hyperbola $\frac { x ^ { 2 } } { a ^ { 2 } } - \frac...

It is known that the left and right foci of the hyperbola $\frac { x ^ { 2 } } { a ^ { 2 } } - \frac { y ^ { 2 } } { b ^ { 2 } } = 1 ( a > 0 , b > 0 )$ are $F _ { 1 } , F _ { 2 } , P$ on the right branch of the hyperbola. $P F _ { 2 } \perp F _ { 1 } F _ { 2 } , O H \perp P F _ { 1 } 于 _ { H } , O H = \frac { 1 } { 3 } O F _ { 1 }$ is a point on the right branch of the hyperbola, then the asymptotic equation of the hyperbola is

  • A. A. $y = \pm 4 x$
  • B. B. $y = \pm 3 x$
  • C. C. $y = \pm 2 x$
  • D. D. $y = \pm x$

Answer: D

Solution: SOLUTION: When $x = c$, substituting the hyperbola gives $y = \pm \frac { b ^ { 2 } } { a }$, so $\left| P F _ { 2 } \right| = \frac { b ^ { 2 } } { a }$, and $\left| P F _ { 1 } \right| - \left| P F _ { 2 } \right| = 2 a$. so $\left| P F _ { 1 } \right| = 2 a + \frac { b ^ { 2 } } { a }$ Since $P F _ { 2 } \perp F _ { 1 } F _ { 2 } , ~ O H \perp P F _ { 1 }$ , so $\triangle F _ { 1 } O H \sim \triangle F _ { 1 } P F _ { 2 }$ From similar triangles, $\frac { | O H | } { \left| P F _ { 2 } \right| } = \frac { \left| O F _ { 1 } \right| } { \left| P F _ { 1 } \right| }$ because $O H = \frac { 1 } { 3 } O F _ { 1 }$ Therefore $\frac { 1 } { 3 } = \frac { \frac { b ^ { 2 } } { a ^ { 2 } } } { 2 a + \frac { b ^ { 2 } } { a } }$ $\therefore \frac { 2 } { 3 } a ^ { 2 } + \frac { 1 } { 3 } b ^ { 2 } = b ^ { 2 }$, then $a = b$, so the asymptotic equation of the hyperbola is $y = \pm x$;

Question 23: 24. If $\odot C _ { 1 } : x ^ { 2 } + y ^ { 2 } - 2 x - 2 y - 14 = 0 , \odot C _ { 2 } : x ^ { 2 } +...

24. If $\odot C _ { 1 } : x ^ { 2 } + y ^ { 2 } - 2 x - 2 y - 14 = 0 , \odot C _ { 2 } : x ^ { 2 } + y ^ { 2 } + 4 x + 6 y + 4 = 0$, then $\oplus C _ { 1 }$ is tangent to $\odot C _ { 2 }$. of $\odot C _ { 2 }$ is

  • A. A. 1
  • B. B. 2
  • C. C. 3
  • D. D. 4

Answer: B

Solution: $\odot C _ { 1 } : x ^ { 2 } + y ^ { 2 } - 2 x - 2 y - 14 = 0$. i.e. $\odot C _ { 1 } : ( x - 1 ) ^ { 2 } + ( y - 1 ) ^ { 2 } = 16$, center of circle $C _ { 1 } ( 1,1 ) , r _ { 1 } = 4$, $C _ { 1 } ( 1,1 ) , r _ { 1 } = 4$, $\odot C _ { 2 } : x ^ { 2 } + y ^ { 2 } + 4 x + 6 y + 4 = 0$ $\odot C _ { 2 } : x ^ { 2 } + y ^ { 2 } + 4 x + 6 y + 4 = 0$ i.e. $\odot C _ { 2 } : ( x + 2 ) ^ { 2 } + ( y + 3 ) ^ { 2 } = 9$, center of circle $C _ { 2 } ( - 2 , - 3 ) , r _ { 1 } = 3$, $C _ { 2 } ( - 2 , - 3 ) , r _ { 1 } = 3$ then $\left| C _ { 1 } C _ { 2 } \right| = \sqrt { 3 ^ { 2 } + 4 ^ { 2 } } = 5$ , the $\left| C _ { 1 } C _ { 2 } \right| = \sqrt { 3 ^ { 2 } + 4 ^ { 2 } } = 5$ so $r _ { 1 } - r _ { 2 } < 5 < r _ { 1 } + r _ { 2 }$ , and So the two circles intersect and have 2 common tangents.

Question 24: 25. The general equation of a circle is known to be $x ^ { 2 } + y ^ { 2 } + 4 x - 2 y - 4 = 0$, the...

25. The general equation of a circle is known to be $x ^ { 2 } + y ^ { 2 } + 4 x - 2 y - 4 = 0$, then the radius of the circle is

  • A. A. 1
  • B. B. 2
  • C. C. 3
  • D. D. 4

Answer: C

Solution: The standard equation of a circle is given by $x ^ { 2 } + y ^ { 2 } + 4 x - 2 y - 4 = 0$: $( x + 2 ) ^ { 2 } + ( y - 1 ) ^ { 2 } = 9$, so the radius of the circle is 3.

Question 25: 26. It is known that the left and right foci of the ellipse $C : \frac { x ^ { 2 } } { a ^ { 2 } } +...

26. It is known that the left and right foci of the ellipse $C : \frac { x ^ { 2 } } { a ^ { 2 } } + \frac { y ^ { 2 } } { b ^ { 2 } } = 1 \quad ( a > b > 0 )$ are $F _ { 1 } , F _ { 2 } , P$ a point on the ellipse. $\angle F _ { 1 } P F _ { 2 } = 60 ^ { \circ }$, if the distance from the origin $O$ to $P F _ { 1 }$ is $\frac { \sqrt { 3 } } { 6 } a$, then the eccentricity of the ellipse is

  • A. A. $\frac { \sqrt { 2 } } { 5 }$
  • B. B. $\frac { \sqrt { 6 } } { 3 }$
  • C. C. $\frac { \sqrt { 7 } } { 3 }$
  • D. D. $\frac { \sqrt { 3 } } { 3 }$

Answer: D

Solution: Set $\left| P F _ { 1 } \right| = m , \left| P F _ { 2 } \right| = n$. as ${ } ^ { O N \perp P F _ { 1 } } , \quad F _ { 2 } M \perp P F _ { 1 }$. ![](/images/questions/analytic-geometry/image-003.jpg) From the question, we have $| O N | = \frac { \sqrt { 3 } } { 6 } a , \left| F _ { 2 } M \right| = \frac { \sqrt { 3 } } { 3 } a , \angle F _ { 1 } P F _ { 2 } = 60 ^ { \circ }$ , ${ } ^ { O N \perp P F _ { 1 } } , \quad F _ { 2 } M \perp P F _ { 1 }$ , ![](/images/questions/analytic-geometry/image-003.jpg) That is, we have $| P M | = \frac { 1 } { 3 } a , \left| P F _ { 2 } \right| = \frac { 2 } { 3 } a$, and from $m + n = 2 a$ which leads to $\left| M F _ { 1 } \right| = a$. Since $\left| F _ { 1 } F _ { 2 } \right| = 2 c$, in the right triangle $F _ { 1 } M F _ { 2 }$, by the Pythagorean Theorem, we have $a ^ { 2 } + \left( \frac { \sqrt { 3 } } { 3 } a \right) ^ { 2 } = 4 c ^ { 2 }$ , the which gives $e = \frac { c } { a } = \frac { \sqrt { 3 } } { 3 }$.

Question 26: 27. It is known that $a _ { 1 } , a _ { 2 } , b _ { 1 } , b _ { 2 } , c _ { 1 } , c _ { 2 } \in \mat...

27. It is known that $a _ { 1 } , a _ { 2 } , b _ { 1 } , b _ { 2 } , c _ { 1 } , c _ { 2 } \in \mathbf { R }$, the line ${ } ^ { l } : a _ { 1 } x + b _ { 1 } y + c _ { 1 } = 0 , l _ { 2 } : a _ { 2 } x + b _ { 2 } y + c _ { 2 } = 0$ Then "$\frac { a _ { 1 } } { a _ { 2 } } = \frac { b _ { 1 } } { b _ { 2 } }$" is the "line $l _ { 1 }$ parallel to $l _ { 2 }$" of $l _ { 2 }$.

  • A. A. sufficient and unnecessary condition
  • B. B. necessary but not sufficient condition (math.)
  • C. C. necessary and sufficient condition
  • D. D. Neither sufficient nor necessary

Answer: D

Solution: When $\frac { a _ { 1 } } { b _ { 1 } } = \frac { a _ { 2 } } { b _ { 2 } }$, the two lines may be parallel or coincident, so sufficiency does not hold; When $l _ { 1 } / / l _ { 2 }$, $b _ { 1 }$ and $b _ { 2 }$ may both be equal to 0, so $\frac { a _ { 1 } } { b _ { 1 } } = \frac { a _ { 2 } } { b _ { 2 } }$ does not necessarily hold, and therefore necessity does not hold; In summary, $\frac { a _ { 1 } } { b _ { 1 } } = \frac { a _ { 2 } } { b _ { 2 } }$ is neither sufficient nor necessary for $l _ { 1 } / / l _ { 2 }$.

Question 27: 29. It is known that the focus of the parabola $C : y = \frac { 1 } { 4 } x ^ { 2 }$ is $F , P$ is a...

29. It is known that the focus of the parabola $C : y = \frac { 1 } { 4 } x ^ { 2 }$ is $F , P$ is a point on the parabola $C$ and $| P F | = 3$ , then the distance of the point ${ } _ { P }$ to the origin is ( ). $O$ to the origin of the coordinates is ( )

  • A. A. 2
  • B. B. $2 \sqrt { 2 }$
  • C. C. $2 \sqrt { 3 }$
  • D. D. 4

Answer: C

Solution: $4 y = x ^ { 2 }$ , then the collinear equation is ${ } ^ { y = - 1 }$ , the Set $P ( m , n )$ , from the question, we can get $n + 1 = 3$ , solve $n = 2$ , then $m ^ { 2 } = 8$ . Therefore, the distance from the point $P$ to the origin $O$ is $\sqrt { m ^ { 2 } + n ^ { 2 } } = \sqrt { 8 + 4 } = 2 \sqrt { 3 }$.

Question 28: 30. It is known that the left and right foci of the hyperbola $C : \frac { x ^ { 2 } } { a ^ { 2 } }...

30. It is known that the left and right foci of the hyperbola $C : \frac { x ^ { 2 } } { a ^ { 2 } } - \frac { y ^ { 2 } } { b ^ { 2 } } = 1 ( a , b > 0 )$ are $F _ { 1 } ( - c , 0 ) , F _ { 2 } ( c , 0 )$, and if there exists a point $P$ on the left branch of the hyperbola such that $\left| P F _ { 2 } \right| = \frac { 3 } { 2 } C - 2 a$, then the range of values of the eccentricity is ( )

  • A. A. $( 1,4 ]$
  • B. B. $[ 6 , + \infty )$
  • C. C. $[ 4 , + \infty )$
  • D. D. $[ 2 , + \infty )$

Answer: B

Solution:

Question 29: 31. Let $F$ be the right focus of the ellipse $\frac { x ^ { 2 } } { 4 } + y ^ { 2 } = 1$, and the m...

31. Let $F$ be the right focus of the ellipse $\frac { x ^ { 2 } } { 4 } + y ^ { 2 } = 1$, and the maximum distance between the point on the ellipse and the point $F$ is $M$, and the minimum distance is $m$, then the coordinates of the point on the ellipse and the point ${ } _ { F }$ are equal to ( ). ], then the coordinates of the point on the ellipse whose distance from the point ${ } _ { F }$ is equal to $\frac { 1 } { 2 } ( M + m )$ are ( )

  • A. A. $( 0 , \pm 2 )$
  • B. B. $( 0 , \pm 1 )$
  • C. C. $\left( \sqrt { 3 } , \pm \frac { 1 } { 2 } \right)$
  • D. D. $\left( \sqrt { 2 } , \pm \frac { \sqrt { 2 } } { 2 } \right)$

Answer: B

Solution: SOLUTION: $\because \frac { x ^ { 2 } } { 4 } + y ^ { 2 } = 1$, so $a = 2 , b = 1 , c = \sqrt { a ^ { 2 } - b ^ { 2 } } = \sqrt { 3 }$, the Also the maximum distance between the point on the rough circle and the right focus $F$ is $M$ and the minimum distance is $m$, the $m$ $\therefore M = a + c , n = a - c$. $\therefore \frac { 1 } { 2 } ( M + m ) = a = 2$. Then the points on the ellipse whose distance from the right focus $F$ is equal to $\frac { 1 } { 2 } ( M + m )$ are the two vertices of the short axis with coordinates $( 0 , \pm 1 )$.

Question 30: 32. $M \left( x _ { 0 } , y _ { 0 } \right)$ is a point in the circle $x ^ { 2 } + y ^ { 2 } = 1$ th...

32. $M \left( x _ { 0 } , y _ { 0 } \right)$ is a point in the circle $x ^ { 2 } + y ^ { 2 } = 1$ that is different from the center of the circle, then the position of the line $x _ { 0 } x + y _ { 0 } y = 1$ with the circle is

  • A. A. tangency
  • B. B. intersect
  • C. C. leave each other
  • D. D. Tangent or intersection

Answer: C

Solution: From the question, $M \left( x _ { 0 } , y _ { 0 } \right)$ is a point inside the circle $x ^ { 2 } + y ^ { 2 } = 1$ which is different from the center of the circle. Then $x _ { 0 } ^ { 2 } + y _ { 0 } ^ { 2 } < 1$, $x _ { 0 } ^ { 2 } + y _ { 0 } ^ { 2 } < 1$ and the distance from the center of the circle $x ^ { 2 } + y ^ { 2 } = 1$ to the line $x _ { 0 } x + y _ { 0 } y = 1$ is $d = \frac { 1 } { \sqrt { x _ { 0 } ^ { 2 } + y _ { 0 } ^ { 2 } } } > 1 = r$. Therefore, the positional relationship between the line $x _ { 0 } x + y _ { 0 } y = 1$ and the circle is disjoint.

Question 31: 33. It is known that hyperbola $C : \frac { x ^ { 2 } } { 12 } - \frac { y ^ { 2 } } { 4 } = 1$, poi...

33. It is known that hyperbola $C : \frac { x ^ { 2 } } { 12 } - \frac { y ^ { 2 } } { 4 } = 1$, point $F$ is the right focus of $C$, and point $P$ is the moving point on the left branch of $C$. INLINE_FORMULA_5]] to the left branch of $P$. $C$ to an asymptote of $d$, then the minimum value of $d + | P F |$ is ( )

  • A. A. $2 + 4 \sqrt { 3 }$
  • B. B. $6 \sqrt { 3 }$
  • C. C. 8
  • D. D. 10

Answer: A

Solution: From the hyperbola $C : \frac { x ^ { 2 } } { 12 } - \frac { y ^ { 2 } } { 4 } = 1$, it follows that $a = 2 \sqrt { 3 } , b = 2 , F ( 40 )$ Let the left focus of the hyperbola be $F ^ { \prime } ( - 40 )$, and let an asymptote be $l : y = - \frac { b } { a } x = - \frac { \sqrt { 3 } } { 3 } x$, which is $x + \sqrt { 3 } y = 0$. as $P E \perp l$, and the vertical foot is $E$, i.e. $| P E | = d$, and the vertical foot is $| P E | = d$. as $_ { F \prime } H \perp l$ with a plumb bob of $H$, that is $\left| F ^ { \prime } H \right| = \frac { | - 4 | } { \sqrt { 1 ^ { 2 } + ( \sqrt { 3 } ) ^ { 2 } } } = 2$, and ![](/images/questions/analytic-geometry/image-004.jpg) since the point $P$ is a moving point on the left branch of $C$. So $| P F | - \left| P F ^ { \prime } \right| = 2 a$ , which gives $| P F | = 2 a + \left| P F ^ { \prime } \right|$ , the Therefore ${ } ^ { d + | F P | = | P E | + 2 a + \left| P F ^ { \prime } \right| = 2 a + | P E | + \left| P F ^ { \prime } \right| \text { ,} }$ From the figure, $P , F ^ { \prime } , E$ is minimized by $2 \times 2 \sqrt { 3 } + \left| F ^ { \prime } H \right| = 4 \sqrt { 3 } + 2$ when the three points of $P , F ^ { \prime } , E$ are co-linear, i.e., when the points of $E$ and $H$ are coincident. i.e. $d + | P F | _ { \text {has minimum value } } 4 \sqrt { 3 } + 2$.

Question 32: 34. Let $F _ { 1 } , F _ { 2 }$ be the left and right foci of the hyperbola $C : x ^ { 2 } - \frac {...

34. Let $F _ { 1 } , F _ { 2 }$ be the left and right foci of the hyperbola $C : x ^ { 2 } - \frac { y ^ { 2 } } { b ^ { 2 } } = 1$, and the vertical line from $x$ to $C$ over $A$, $B$ and $\triangle A B F _ { 1 }$ is a positive triangle. INLINE_FORMULA_5]], $B$, if $\triangle A B F _ { 1 }$ is a positive triangle, then ( )

  • A. A. $b = 2$
  • B. B. $C$ has a focus of $2 \sqrt { 3 }$
  • C. C. $C$ has a centroid of $\frac { \sqrt { 6 } } { 3 }$
  • D. D. The area of $\triangle A B F _ { 1 }$ is $2 \sqrt { 2 }$

Answer: B

Solution: From the hyperbola $C : x ^ { 2 } - \frac { y ^ { 2 } } { b ^ { 2 } } = 1$, we get $c = \sqrt { 1 + b ^ { 2 } } , ~ \therefore F _ { 1 } \left( - \sqrt { 1 + b ^ { 2 } } , ~ 0 \right) , ~ F _ { 2 } \left( \sqrt { 1 + b ^ { 2 } } , ~ 0 \right)$, and substituting $x = \sqrt { 1 + b ^ { 2 } }$ into the hyperbola equation gives us: $1 + b ^ { 2 } - \frac { y ^ { 2 } } { b ^ { 2 } } = 1$, which solves for $y = \pm b ^ { 2 }$. It may be useful to take $A \left( \sqrt { 1 + b ^ { 2 } } , b ^ { 2 } \right) , B \left( \sqrt { 1 + b ^ { 2 } } , - b ^ { 2 } \right)$, $A \left( \sqrt { 1 + b ^ { 2 } } , b ^ { 2 } \right) , B \left( \sqrt { 1 + b ^ { 2 } } , - b ^ { 2 } \right)$ $\triangle A B F _ { 1 }$ to be a square triangle. $\tan \angle A F _ { 1 } F _ { 2 } = \tan 30 ^ { \circ } = \frac { \sqrt { 3 } } { 3 } = \frac { \left| A F _ { 2 } \right| } { \left| F _ { 1 } F _ { 2 } \right| } = \frac { b ^ { 2 } } { 2 \sqrt { 1 + b ^ { 2 } } }$, $A \left( \sqrt { 1 + b ^ { 2 } } , b ^ { 2 } \right) , B \left( \sqrt { 1 + b ^ { 2 } } , - b ^ { 2 } \right)$, $\triangle A B F _ { 1 }$ are square triangles. Solve for $b ^ { 2 } = 2$, $\tan \angle A F _ { 1 } F _ { 2 } = \tan 30 ^ { \circ } = \frac { \sqrt { 3 } } { 3 } = \frac { \left| A F _ { 2 } \right| } { \left| F _ { 1 } F _ { 2 } \right| } = \frac { b ^ { 2 } } { 2 \sqrt { 1 + b ^ { 2 } } }$ $\therefore b = \sqrt { 2 } , ~ c = \sqrt { 3 } , ~ 2 c = 2 \sqrt { 3 } , e = \frac { c } { a } = \sqrt { 3 }$, $\therefore b = \sqrt { 2 } , ~ c = \sqrt { 3 } , ~ 2 c = 2 \sqrt { 3 } , e = \frac { c } { a } = \sqrt { 3 }$, $\therefore b = \sqrt { 2 } , ~ c = \sqrt { 3 } , ~ 2 c = 2 \sqrt { 3 } , e = \frac { c } { a } = \sqrt { 3 }$ $S _ { \triangle A B F _ { 1 } } = \frac { 1 } { 2 } \times 2 c \times 2 b ^ { 2 } = 4 \sqrt { 3 }$.

Question 33: 35. It is known that the left and right foci $\frac { x ^ { 2 } } { a ^ { 2 } } - \frac { y ^ { 2 } ...

35. It is known that the left and right foci $\frac { x ^ { 2 } } { a ^ { 2 } } - \frac { y ^ { 2 } } { b ^ { 2 } } = 1 ( a > 0 , b > 0 )$ of the hyperbola $F _ { 1 } , F _ { 2 } , c$ are semifocal distances, and $P$ is a point on the hyperbola which is distinct from the endpoints of the real axis and satisfies $c \tan \angle P F _ { 1 } F _ { 2 } = a \tan \angle P F _ { 2 } F _ { 1 }$, then the eccentricity of the hyperbola [[]] is the value of $e$. INLINE_FORMULA_4]] is in the range of

  • A. A. $( 1 + \sqrt { 2 } , 1 + \sqrt { 3 } )$ B. $( 1 + \sqrt { 2 } , + \infty )$
  • B. B. $( 1 + \sqrt { 2 } , 1 + \sqrt { 3 } )$ B. $( 1 + \sqrt { 2 } , + \infty )$
  • C. C. $( \sqrt { 2 } , 1 + \sqrt { 2 } )$
  • D. D. $( 1,1 + \sqrt { 2 } )$

Answer: B

Solution: Because $c \tan \angle P F _ { 1 } F _ { 2 } = a \tan \angle P F _ { 2 } F _ { 1 }$. Therefore $e = \frac { c } { a } = \frac { \tan \angle P F _ { 2 } F _ { 1 } } { \tan \angle P F _ { 1 } F _ { 2 } }$ , . Let $P ( m , n ) , F _ { 1 } ( - c , 0 ) , F _ { 2 } ( c , 0 )$ , . so that $e = \frac { \tan \angle P F _ { 2 } F _ { 1 } } { \tan \angle P F _ { 1 } F _ { 2 } } = - \frac { n } { m - c } \cdot \frac { m + c } { n } = - \frac { m + c } { m - c } = - 1 - \frac { 2 c } { m - c }$ , . because $m > a$ , . so $- 1 - \frac { 2 c } { m - c } > - 1 + \frac { - 2 c } { a - c } = - 1 + \frac { 2 e } { e - 1 }$. so $e + 1 > \frac { 2 e } { e - 1 }$ . i.e. $e ^ { 2 } - 2 e - 1 > 0$ . Solve for $e > 1 + \sqrt { 2 }$.

Question 34: 36. Let the line $2 x + ( k - 3 ) y - 2 k + 6 = 0$ pass through the fixed point $P$, then the coordi...

36. Let the line $2 x + ( k - 3 ) y - 2 k + 6 = 0$ pass through the fixed point $P$, then the coordinates of the point $P$ are ( ).

  • A. A. $( 3,0 )$
  • B. B. $( 0,2 )$
  • C. C. $( 0,3 )$
  • D. D. $( 2,0 )$

Answer: B

Solution: Equate the line to $( 2 x - 3 y + 6 ) + k ( y - 2 ) = 0$. At that time $\left\{ \begin{array} { l } y - 2 = 0 \\ 2 x - 3 y + 6 = 0 \text { 即 } \end{array} \left\{ \begin{array} { l } x = 0 \\ y = 2 \text { ,直线 } 2 x + ( k - 3 ) y - 2 k + 6 = 0 \text { 恒过定点 } ( 0,2 ) \text { ,} \end{array} \right. \right.$

Question 35: 37. It is known that the proposition $p :$ that the line $l : y = m x - 2$ passes through the fixed ...

37. It is known that the proposition $p :$ that the line $l : y = m x - 2$ passes through the fixed point $( 0,2 )$, and that the proposition $q : n = 1$ is a necessary condition for the line $l _ { 1 } : x + n y - 1 = 0$ to be perpendicular to the line $l _ { 2 } : y = n x + 1$. FORMULA_5]] is perpendicular to the line $l _ { 2 } : y = n x + 1$, then the following proposition is true

  • A. A. $p ^ { \wedge } q$
  • B. B. $p ^ { \wedge } \neg q$
  • C. C. $\neg p ^ { \wedge } q$
  • D. D. $\neg p ^ { \vee } q$

Answer: D

Solution: Solution: Proposition $p$ : The line $^ { l : y = m x - 2 }$ passes through the fixed point $^ { ( 0 , - 2 ) }$, so the proposition $p$ is false, $\neg p$ is true. INLINE_FORMULA_5]] is constant, the line ${ } ^ { l }$ is perpendicular to the line ${ } ^ { l }$ for any ${ } ^ { n \in \mathrm { R } }$, and so the proposition $q : n = 1$ is the line ${ } ^ { n - n } = 0$. INLINE_FORMULA_10]] and the line $l _ { 2 } : y = n x + 1$ are perpendicular to each other, so proposition $q$ is false, $\neg q$ is true, and so [[INLINE_FORMULA_14 ]] are both false propositions and $\neg p ^ { \wedge } q$ is true.

Question 36: 38. In the plane rectangular coordinate system $x O y$, $A ( - 3,0 ) , B ( 1,0 ) , P$ is known to be...

38. In the plane rectangular coordinate system $x O y$, $A ( - 3,0 ) , B ( 1,0 ) , P$ is known to be a moving point on the circle $C : ( x - 3 ) ^ { 2 } + ( y - 3 ) ^ { 2 } = 1$, then the minimum value of $| P A | ^ { 2 } + | P B | ^ { 2 }$ is ( )

  • A. A. 34
  • B. B. 40
  • C. C. 44
  • D. D. 48

Answer: B

Solution: Let $P ( x , y )$, then $| P A | ^ { 2 } + | P B | ^ { 2 } = ( x + 3 ) ^ { 2 } + y ^ { 2 } + ( x - 1 ) ^ { 2 } + y ^ { 2 } = 2 x ^ { 2 } + 2 y ^ { 2 } + 4 x + 10$ $= 2 \left[ ( x + 1 ) ^ { 2 } + y ^ { 2 } \right] + 8$, i.e. $| P A | ^ { 2 } + | P B | ^ { 2 }$ is equivalent to point $| P A | ^ { 2 } + | P B | ^ { 2 }$. i.e. $| P A | ^ { 2 } + | P B | ^ { 2 }$ is equivalent to two times the square of the distance from the point $P$ to the point $Q ( - 1,0 )$ plus eight. and $| P Q | \geq | Q C | - | P C | = \sqrt { ( 3 + 1 ) ^ { 2 } + 3 ^ { 2 } } - 1 = 5 - 1 = 4$. That is, $| P A | ^ { 2 } + | P B | ^ { 2 } \geq 2 \times 4 ^ { 2 } + 8 = 40$.

Question 37: 39. It is known that the ellipse $C _ { 1 } : \frac { x ^ { 2 } } { 13 } + y ^ { 2 } = 1$, the hyper...

39. It is known that the ellipse $C _ { 1 } : \frac { x ^ { 2 } } { 13 } + y ^ { 2 } = 1$, the hyperbola $C _ { 2 } : \frac { x ^ { 2 } } { a ^ { 2 } } - \frac { y ^ { 2 } } { b ^ { 2 } } = 1 ( a , b > 0 )$, if the circle with the long axis of $C _ { 1 }$ as diameter intersects an asymptote of ${ } ^ { C _ { 2 } }$ at two points of $A , B$, and the two intersections of the ellipse ${ } ^ { C _ { 1 } }$ with this asymptote bisect the line segment $A B$ in three equal parts, then $C _ { 2 }$ The eccentricity of the segment $C _ { 2 }$ is

  • A. A. $\sqrt { 3 }$
  • B. B. 3
  • C. C. $\sqrt { 5 }$
  • D. D. 5

Answer: A

Solution: Set $O A _ { \text {的方程为 } } y = k x \left( k > 0 , x _ { 0 } > 0 \right)$, $\therefore _ { \text {设 } } A \left( x _ { 0 } , k x _ { 0 } \right)$ $\therefore _ { \text {设 } } A \left( x _ { 0 } , k x _ { 0 } \right)$ . From the known, we have $| O A | = \sqrt { 13 }$ i.e. $\sqrt { 1 + k ^ { 2 } } x _ { 0 } = \sqrt { 13 }$. Solve for $x _ { 0 } = \frac { \sqrt { 13 } } { \sqrt { 1 + k ^ { 2 } } }$. Therefore $A \left( \frac { \sqrt { 13 } } { \sqrt { 1 + k ^ { 2 } } } , \frac { \sqrt { 13 } k } { \sqrt { 1 + k ^ { 2 } } } \right)$, $A \left( \frac { \sqrt { 13 } } { \sqrt { 1 + k ^ { 2 } } } , \frac { \sqrt { 13 } k } { \sqrt { 1 + k ^ { 2 } } } \right)$ $\therefore A B$ has the coordinates of a trinomial of $\left( \frac { \sqrt { 13 } } { 3 \sqrt { 1 + k ^ { 2 } } } , \frac { \sqrt { 13 } k } { 3 \sqrt { 1 + k ^ { 2 } } } \right)$, which is on the ellipse of $\therefore \frac { \left( \frac { \sqrt { 13 } } { 3 \sqrt { 1 + k ^ { 2 } } } \right) ^ { 2 } } { 13 } + \left( \frac { \sqrt { 13 } k } { 3 \sqrt { 1 + k ^ { 2 } } } \right) ^ { 2 } = 1$. i.e. $1 + 13 k ^ { 2 } = 9 \left( 1 + k ^ { 2 } \right)$ . Solving for $k ^ { 2 } = 2$ gives $\frac { b ^ { 2 } } { a ^ { 2 } } = 2 , b ^ { 2 } = 2 a ^ { 2 }$ , which is Solve for $e = \frac { c } { a } = \sqrt { \frac { a ^ { 2 } + b ^ { 2 } } { a ^ { 2 } } } = \sqrt { 3 }$.

Question 38: 40. A square $A B C D - A _ { 1 } B _ { 1 } C _ { 1 } D _ { 1 }$ has prisms of length 5, a point $M$...

40. A square $A B C D - A _ { 1 } B _ { 1 } C _ { 1 } D _ { 1 }$ has prisms of length 5, a point $M$ is on the prisms $A B$ and $A M = 2$, and the point $P$ is a moving point in the lower $A B C D$ of the square, and the moving point $P$ goes to the straight line $A B C D$, including the boundary. INLINE_FORMULA_5]], and the squared difference between the distance of the moving point $P$ to the line ${ } ^ { A _ { 1 } D _ { 1 } }$ and the distance of the point $P$ to the point $M$ is 25 , then the minimum value of the moving point $P$ to the point $B$ is High School Mathematics Assignment, October 29, 2025

  • A. A. $\frac { 7 } { 2 }$
  • B. B. $2 \sqrt { 3 }$
  • C. C. $\sqrt { 6 }$
  • D. D. $\sqrt { 2 }$

Answer: B

Solution: ![](/images/questions/analytic-geometry/image-005.jpg) As shown in the figure, make ${ } ^ { P Q \perp A D } , Q$ the vertical foot, then ${ } ^ { P Q \perp }$ the plane $^ { A D D _ { 1 } A _ { 1 } }$, and across the point $Q$ make ${ } ^ { Q R \perp A D }$, intersecting at $R$, then ${ } ^ { A } D _ { 1 } \perp$ is the plane $P Q R$, so $P R$ is $P$ to the line $P$. INLINE_FORMULA_11]]. Since $P R ^ { 2 } - P M ^ { 2 } = 25$ and $P R ^ { 2 } - P Q ^ { 2 } = R Q ^ { 2 } = 25$, $P M = P Q$. So the trajectory of the point $P$ is a parabola with $A D$ as the collinear and the point $M$ as the focus. ![](/images/questions/analytic-geometry/image-006.jpg) If a right-angle coordinate system is established as shown in the figure, the equation of the trajectory of the point $P$ is $y ^ { 2 } = 4 x ( 0 \leq y \leq 4 )$, the point $_ { A ( - 1,0 ) , B ( 4,0 ) }$, and the point $P \left( \frac { y ^ { 2 } } { 4 } , y \right)$ is set to be $P \left( \frac { y ^ { 2 } } { 4 } , y \right)$, so $| P B | = \sqrt { \left( \frac { y ^ { 2 } } { 4 } - 4 \right) ^ { 2 } + y ^ { 2 } } = \sqrt { \frac { y ^ { 4 } } { 16 } - y ^ { 2 } + 16 }$ $= \sqrt { \frac { 1 } { 16 } \left( y ^ { 2 } - 8 \right) ^ { 2 } + 12 }$, so when $y ^ { 2 } = 8 , | P B |$ obtains the minimum value $2 \sqrt { 3 }$.
Back to Topics

Analytic Geometry

平面解析几何

38 Practice Questions

Practice with Chinese questions to prepare for the CSCA exam. You can toggle translations while practicing.

Topic Overview

Plane analytic geometry is the branch of mathematics that investigates the properties of geometric figures through coordinate systems, and deals with the representation of equations and their interrelationships for graphs such as lines, circles, and conic curves. In the CSCA exam, this part of the questions often test the application of basic formulas, the judgment of the relationship between the position of graphs (e.g., parallel and perpendicular), and the correspondence between standard equations and geometric properties. The format of the questions is based on calculations and derivation of equations, and requires proficiency in the standard equations and geometric properties of various types of curves.

Questions:38

Key Points

  • 1Linear equations and positional relationships (parallel, perpendicular, intersection)
  • 2Standard Equation of a Circle and Calculation of the Radius of the Center of the Circle
  • 3Standard equations and geometric properties of conic curves (ellipses, hyperbolas, parabolas)
  • 4Application of the Distance Formula and the Midpoint Coordinate Formula

Study Tips

It is recommended to memorize the standard equations of various types of curves and their geometric parameters and to reinforce the correspondence between graphs and equations through practice.

Practicing topics ≠ Passing the exam

Full mock exam based on official syllabus, with mixed topics like the real test

Get Mock Exams →

No credit card? Email us: kaiguo370@gmail.com