34. Let $F _ { 1 } , F _ { 2 }$ be the left and right foci of the hyperbola $C : x ^ { 2 } - \frac { y ^ { 2 } } { b ^ { 2 } } = 1$, and the vertical line from $x$ to $C$ over $A$, $B$ and $\triangle A B F _ { 1 }$ is a positive triangle. INLINE_FORMULA_5]], $B$, if $\triangle A B F _ { 1 }$ is a positive triangle, then ( )
- A. A. $b = 2$
- B. B. $C$ has a focus of $2 \sqrt { 3 }$
- C. C. $C$ has a centroid of $\frac { \sqrt { 6 } } { 3 }$
- D. D. The area of $\triangle A B F _ { 1 }$ is $2 \sqrt { 2 }$
Answer: B
Solution: From the hyperbola $C : x ^ { 2 } - \frac { y ^ { 2 } } { b ^ { 2 } } = 1$, we get $c = \sqrt { 1 + b ^ { 2 } } , ~ \therefore F _ { 1 } \left( - \sqrt { 1 + b ^ { 2 } } , ~ 0 \right) , ~ F _ { 2 } \left( \sqrt { 1 + b ^ { 2 } } , ~ 0 \right)$, and substituting $x = \sqrt { 1 + b ^ { 2 } }$ into the hyperbola equation gives us: $1 + b ^ { 2 } - \frac { y ^ { 2 } } { b ^ { 2 } } = 1$, which solves for $y = \pm b ^ { 2 }$.
It may be useful to take $A \left( \sqrt { 1 + b ^ { 2 } } , b ^ { 2 } \right) , B \left( \sqrt { 1 + b ^ { 2 } } , - b ^ { 2 } \right)$, $A \left( \sqrt { 1 + b ^ { 2 } } , b ^ { 2 } \right) , B \left( \sqrt { 1 + b ^ { 2 } } , - b ^ { 2 } \right)$
$\triangle A B F _ { 1 }$ to be a square triangle.
$\tan \angle A F _ { 1 } F _ { 2 } = \tan 30 ^ { \circ } = \frac { \sqrt { 3 } } { 3 } = \frac { \left| A F _ { 2 } \right| } { \left| F _ { 1 } F _ { 2 } \right| } = \frac { b ^ { 2 } } { 2 \sqrt { 1 + b ^ { 2 } } }$, $A \left( \sqrt { 1 + b ^ { 2 } } , b ^ { 2 } \right) , B \left( \sqrt { 1 + b ^ { 2 } } , - b ^ { 2 } \right)$, $\triangle A B F _ { 1 }$ are square triangles.
Solve for $b ^ { 2 } = 2$, $\tan \angle A F _ { 1 } F _ { 2 } = \tan 30 ^ { \circ } = \frac { \sqrt { 3 } } { 3 } = \frac { \left| A F _ { 2 } \right| } { \left| F _ { 1 } F _ { 2 } \right| } = \frac { b ^ { 2 } } { 2 \sqrt { 1 + b ^ { 2 } } }$
$\therefore b = \sqrt { 2 } , ~ c = \sqrt { 3 } , ~ 2 c = 2 \sqrt { 3 } , e = \frac { c } { a } = \sqrt { 3 }$, $\therefore b = \sqrt { 2 } , ~ c = \sqrt { 3 } , ~ 2 c = 2 \sqrt { 3 } , e = \frac { c } { a } = \sqrt { 3 }$, $\therefore b = \sqrt { 2 } , ~ c = \sqrt { 3 } , ~ 2 c = 2 \sqrt { 3 } , e = \frac { c } { a } = \sqrt { 3 }$
$S _ { \triangle A B F _ { 1 } } = \frac { 1 } { 2 } \times 2 c \times 2 b ^ { 2 } = 4 \sqrt { 3 }$.