1. It is known that when $\mathrm { Cl } _ { 2 }$ is passed into an appropriate amount of KOH solution, there may be $\mathrm { KCl } , \mathrm { KClO } , \mathrm { KClO } _ { 3 }$ in the product, and the value of the product depends on the temperature. When $n ( \mathrm { KOH } ) = a \mathrm {~mol}$ is $n ( \mathrm { KOH } ) = a \mathrm {~mol}$, the following statements are false
- A. A. If the reaction is $= 11$ at a certain temperature, then the solution $=$
- B. B. The amount of chlorine gas participating in the reaction is equal to $a \mathrm {~mol}$
- C. C. The range of $n _ { e }$ for the amount of electrons transferred in a reaction by changing the temperature : $a \mathrm {~mol} \leq n _ { e } \leq a \mathrm {~mol}$
- D. D. Changing the temperature, the maximum theoretical yield of $\mathrm { KClO } _ { 3 }$ in the product is $a \mathrm {~mol}$
Answer: D
Solution: 试题分析 :A. Let $n \left( \mathrm { ClO } ^ { - } \right) = 1 \mathrm {~mol}$, after the reaction $\mathrm { C } \left( \mathrm { Cl } ^ { - } \right) : \mathrm { C } \left( \mathrm { ClO } ^ { - } \right) = 11$, then $n \left( \mathrm { Cl } ^ { - } \right) = 11 \mathrm {~mol}$, the electron transfer is conserved, $5 \times \mathrm { n } \left( \mathrm { ClO } _ { 3 } { } ^ { - } \right) + 1 \times \mathrm { n } \left( \mathrm { ClO } ^ { - } \right) = 1 \times \mathrm { n } \left( \mathrm { Cl } ^ { - } \right)$, that is, $5 \times \mathrm { n } \left( \mathrm { ClO } _ { 3 } \right. \left. { } ^ { - } \right) + 1 \times 1 \mathrm {~mol} = 1 \times 11 \mathrm {~mol}$, the solution is $n \left( \mathrm { ClO } _ { 3 } { } ^ { - } \right) = 2 \mathrm {~mol}$, therefore the solution $=$, so A is correct. INLINE_FORMULA_5]], so the solution is $=$, so A is correct;
B. From the conservation of Cl atoms, $2 n \left( \mathrm { Cl } _ { 2 } \right) = n ( \mathrm { KCl } ) + n ( \mathrm { KClO } ) + n \left( \mathrm { KClO } _ { 3 } \right)$, and from the conservation of potassium ions, $n ( \mathrm { KCl } ) + n ( \mathrm { KClO } ) + n \left( \mathrm { KClO } _ { 3 } \right) = n ( \mathrm { KOH } )$, so the amount of chlorine gas that takes part in the reaction is $= n ( \mathrm { KOH } ) = \mathrm { amol }$, so B is correct;
C. oxidation products only $\mathrm { KClO } _ { 3 }$ when the most electrons are transferred, according to the conservation of electron transfer $\mathrm { n } ( \mathrm { KCl } ) = 5 \left( \mathrm { KClO } _ { 3 } \right)$, by the conservation of potassium ions: $n ( \mathrm { KCl } ) + n \left( \mathrm { KClO } _ { 3 } \right) = n ( \mathrm { KOH } )$, so $n \left( \mathrm { KClO } _ { 3 } \right) = n ( \mathrm { KOH } ) \times 1 / 6 =$ "$a$" $\mathrm { mol } \times 1 / 6$, the maximum amount of electrons transferred is: a mol $\times 5 \times 1 / 6 = \mathrm { a } \times 5 / 6 \mathrm {~mol}$, and the least amount of electrons is transferred when the only oxidation product is KClO, according to the conservation of electron transfer $\times 5 \times 1 / 6 = \mathrm { a } \times 5 / 6 \mathrm {~mol}$. Transfer conservation $n ( \mathrm { KCl } ) = n ( \mathrm { KClO } )$, according to the conservation of potassium ions: $n ( \mathrm { KCl } ) + n ( \mathrm { KClO } ) = \mathrm { n } ( \mathrm { KOH } )$, so $: \mathrm { n } ( \mathrm { KClO } ) = \mathrm { n } ( \mathrm { KOH } ) = \mathrm { a } \mathrm { mol }$, the smallest amount of electrons transferred $= \mathrm { a } \mathrm { mol } \times 1 = \mathrm { a } \mathrm { mol }$, then the amount of electrons transferred in the reaction [$= \mathrm { a } \mathrm { mol } \times 1 = \mathrm { a } \mathrm { mol }$. INLINE_FORMULA_21]] is in the range of a mol $\leq \mathrm { n } _ { \mathrm { e } } \leq \mathrm { a } \mathrm { mol }$, so C is correct; D. Oxidation product is only $\mathrm { KClO } _ { 3 }$ when the maximum amount of its material, according to the conservation of electron transfer $n ( \mathrm { KCl } ) = 5 \left( \mathrm { KClO } _ { 3 } \right)$, by the conservation of potassium ions $: n ( \mathrm { KCl } ) + n \left( \mathrm { KClO } _ { 3 } \right) = n ( \mathrm { KOH } )$, so $n _ { \text {最大 } } \left( \mathrm { KClO } _ { 3 } \right) = \frac { 1 } { 6 } n ( \mathrm { KOH } ) = \frac { 1 } { 6 }$ a mol, so D error.